Functional and Structural Characterization of COVID-19 Risk-Associated Exonic SNPs: An In Silico Analysis

MARCOS JESSÉ ABRAHÃO SILVA¹,*, SEBASTIÃO KAUÃ DE SOUSA BISPO², REBECCA LOBATO MARINHO¹, ELIETE COSTA DA CRUZ³, THIAGO PINTO BRASIL, CAROLINY SOARES SILVA¹, CRISTIANE CUNHA FROTA, DIANA DA COSTA LOBATO¹, LILIAN CRISTINA SANTOS SINFRÔNIO DA SILVA², EVERALDINA CORDEIRO DOS SANTOS², KARLA VALÉRIA BATISTA LIMA², LUANA NEPOMUCENO GONDIM COSTA LIMA²

I POSTGRADUATE PROGRAM IN PARASITIC BIOLOGY IN THE AMAZON (PPGBPA), UNIVERSITY OF PARÁ STATE (UEPA), BELÉM 66087-670, BRAZIL.

BACTERIOLOGY AND MYCOLOGY SECTION (SABMI), EVANDRO CHAGAS INSTITUTE (IEC), ANANINDEUA 67030-000, BRAZIL.

3 DEPARTMENT OF BIOMEDICINE, FEDERAL UNIVERSITY OF CEARÁ (UFC), FORTALEZA 60441-750, BRAZIL.

4 DEPARTMENT OF PATHOLOGY AND LEGAL MEDICINE, FACULTY OF MEDICINE, FEDERAL UNIVERSITY OF CEARÁ (UFC), FORTALEZA 60441-750, BRAZIL.

CORRESPONDING AUTHOR: JESSEABRAHAO10@GMAIL.COM

INTRODUCTION

The individual host susceptibility to coronavirus disease 2019 (COVID-19) can be attributed in part to single nucleotide polymorphisms (SNPs), which may be in exonic sites of the genome. The objective of this work was to analyze, *in silico*, the functional and structural impact of exonic SNPs related in the literature to susceptibility to COVID-19.

METHODS

Literature data were retrieved from PubMed and Science Direct in relation to COVID-19-risk associated SNPs and a separate analysis was performed between synonyms (sSNP) and non-synonymous (nsSNP). To characterize the sSNPs, the following predictions were made: effects on mRNA structure (with RNAfold; CycleFold; Kinefold); splicing effects on mRNA (MaxEnt Scan; Ex Skip); effects on miRNA binding (TargetScan Score). Regarding nsSNPs, the following were performed: functional analysis of protein damage (with SIFT, PolyPhen 2, PhD-SNP, SNPs & GO, Predict SNP 2). After passing pathogenicity criteria, 8 nsSNPs were selected to predict their impacts on stability (CUPSAT), and residual evolution (MutPred, functionality ConSurf).

RESULTS

The structural effects of nsSNPs associated with higher COVID-19 risk are described in Table 3.

					Predicted
Gene	SNP ID	Stability	SS Element	Torsion	$\Delta \Delta G$
					(kcal/mol)
IFIH1	rs1990760	Stabilising	Helix	Unfavourable	0.47
NOS3	rs1799983	Stabilising	Other (turns, coils, etc.)	Unfavourable	0.28
IL-6R	rs2228145	Destabilising	Other (turns, coils, etc.)	Favourable	-0.57
TYK2	rs34536443	Stabilising	Helix	Favourable	5.09
EFNA4	rs114301457	Destabilising	Other (turns, coils, etc.)	Favourable	-1.27
PLSCR1	rs343320	Destabilising	Sheet	Favourable	-3.16
IFNA10	rs28368148	Destabilising	Helix	Unfavourable	-2.19
SLC22A31	rs117169628	Stabilising	Helix	Favourable	0.88
P2RX7	rs208294	Destabilising	Sheet	Unfavourable	-2.47
TLR7	rs179008	Destabilising	Helix	Unfavourable	-0.87
IFNL1	rs30461	Destabilising	Other (turns, coils, etc.)	Favourable	-1.64
DDX58	rs10813831	Destabilising	Helix	Unfavourable	-1.51

The structural patterns in relation to the molecular alterations and conservation of the nsSNPs associated with a higher risk of COVID-19 are described in Table 4.

				ConSurf Conservation Profile		
Gene		SNP ID	PROSITE and ELM Motifs			
	TYK2	rs34536443	None	None	Highly conserved, exposed, functional residue	
	EFNA4	rs114301457	ELME000133, ELME000249, PS01299	Altered Transmembrane protein	Highly conserved, buried, structural residue	
	PLSCRI	rs343320	None	None	Highly conserved, exposed, functional residue	
	IFNA10	rs28368148	PS00252	Altered Metal binding; Altered Ordered interface; Loss of Allosteric site at W164	Highly conserved, buried, structural residue	
	SLC22A31	rs117169628	ELME000149, ELME000336, ELME000337, PS00008	Altered Transmembrane protein; Gain of Helix	Highly conserved, exposed, functional residue	
	P2RX7	rs208294	None	Altered Transmembrane protein; Altered Metal binding; Loss of Strand; Gain of Disulfide linkage at C152; Loss of Proteolytic cleavage at R151; Gain of GPI-anchor amidation at N158	Average conserved, exposed residue.	
	TLR7	rs179008	None	None	Variable, exposed residue.	
	DDX58	rs10813831	None	None	Variable, exposed residue.	

The functional and structural effects of sSNPs associated with the higher risk of COVID-19 are described in Table 1.

Gene	SN P ID	RNAfold (Energy) in ∆∆G (Kcal/mol)	Kinefol d (Pseud oknots)	Cyclefold (Noncano nical base pairings)	MaxEntSc an in ∆∆G (Kcal/mol)	EX-SKIP (ESS/ESE/ESS :ESSE ratio)	Targe tScan (Scor e)	Globa l MAF *
IFIT M3	rs12 252	-58.30	-2.6	15.2	-4.33 (equal)	Without mut: 136, 137, 0.99 / with mut: 137, 140, 0.98	-0.37	G= 0.23 6
TMP RSS2	rs22 986 59	4.4	-1.9	13.8	-8.42 (equal)	Without mut: 51, 180, 0.28 / with mut: 51, 183, 0.28	-0.39	A= 0.20 9
ILIR N	rs41 959 8	-1.5	0	16.6	-11.84 (equal)	Without mut: 99, 186, 0.53 / with mut: 96, 182, 0.53	-0.18	C= 0.19 1
VDR	rs73 123 6	0	0	15.6	-32.88 (equal)	Without: 65, 140, 0.46 / With mut: 65, 143, 0.45	-0.24	G= 0.27 6

*Frequency of existing variant in 1000 Genomes combined population.

The functional effects of nsSNPs associated with higher COVID-19 risk are described in Table 2.

Gene	SNP ID	Globa l MAF *	Amino Acid Chang e	S I F T	Poly Phen 2	PhD - SNP	SNPs & GO	Predict SNP 2*	FunS eq 2	CA DD	DAN N	GW AVA	FAT HM M
IFIHI	rs1990 760	T= 0.356	A946T	Т	Т	Т	Т	Т	D	Т	Т	а	Т
NOS3	rs1799 983	G- 0.823	D298E	Т	Т	Т	Т	Т	D	Т	Т	D	Т
IL-6R	rs2228 145	C=0.2 93	D358A	Т	Т	Т	Т	Т	D	Т	Т	Т	Т
TYK2	rs3453 6443	C= 0.001	P1104 A	D	D	Т	Т	D	D	D	D	D	D
EFNA 4	rs1143 01457	T= 0.002	F124L	Т	D	D	D	Т	Т	D	Т	D	Т
7 PLSC RI	rs3433 20	A= 0.029	H262Y	Т	D	Т	Т	D	D	D	D	D	D
IFNA1 0	rs2836 8148	G= 0.004	W164 C	D	D	D	D	Т	D	D	Т	D	Т
SLC22	rs1171	A=	P474L	D	D	D	D	Т	Т	Т	Т	а	D
A31 P2RX 7	69628 rs2082 94	0.007 C= 0.530	Y155N	D	D	D	D	D	Т	D	D	а	D
TLR7	rs1790 08	T=	Q11P	Т	Т	D	D	Т	Т	Т	Т	а	Т
IFNLI	rs3046	0.118 G=0.2	N188D	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
DDX5 8	1 rs1081 3831	51 A= 0.184	R7C	D	D	Т	D	D	D	Т	D	D	D

a Not found. *Frequency of existing variant in 1000 Genomes combined population. # Predict SNP 2. D= Deleterious. T= Tolerated.

CONCLUSIONS

A total of 9 exonic SNPs (1 sSNP and 8 nsSNPs) were indicated here as potential candidates for further in vivo studies for COVID-19, as they may alter protein stability, interactions, and functional motifs that may be associated with antiviral response pathways.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Thakur, R. & Shankar, J. In silico Analysis Revealed High-risk Single Nucleotide Polymorphisms in Human Pentraxin-3 Gene and their Impact on Innate Immune Response against Microbial Pathogens. Front. Microbiol. 7, (2016).

Ghanavi, J., Farnia, P., Farnia, P. & Velayati, A. Human genetic background in susceptibility to tuberculosis. Int J Mycobacteriol 9, 239 (2020).

Sivashankari, S. & Shanmughavel, P. Comparative genomics - A perspective. Bioinformation 1, 376 (2007).