In the name of God

The 3rd World Sustainability Forum 1-30 November 2013

Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy

Mehri Akbari Kordlar Dr. S. M. S. Mahmoudi Dr. M. A. Rosen

Autumn 2013

Ammonia-Water Processes

Properties of Ammonia-Water Mixtures

→ Have different boiling temperature

→ Evaporate over large temperature range

- Ammonia and water —
- \rightarrow Inexpensive and extensively used in industry
- → Have approximately the same molecular weight

Some properties of ammonia and water

	Ammonia (NH ₃)	Water (H ₂ O)
Molecular weight [kg/kmol]	17.0	18.0
Boiling point at 1.013 bar [K]	239.8	373.2
Freezing point at 1.013 bar [K]	195.4	273.2
Critical temperature [K]	405.5	647.3
Critical pressure [bar]	113.5	221.2

NH3-H2O

Ammonia-Water mixture

Excellent properties thermo-physical properties

Environmentally- friendly material

Best substance for solving globalwarming problem

Non-azeotropic mixture

Reduce irreversibility loss during heat addition

Introduction

NH3-H2O

Previous Work on Ammonia-Water Cycle

□ [Maloney and Robertson, 1950]

• First used an ammonia-water mixture

🗆 [Kalina, 1984]

• Employed an ammonia–water mixture as the bottoming cycle working fluid

[Park and Sonntag ,1990]

• Compared Kalina bottoming cycle for a gas turbine with a singlepressure steam bottoming cycle

[Desideri and Bidini ,1996]

• Compared steam flash cycles, Rankine cycles with ammonia or ammonia-water mixtures as working fluids and Kalina cycles without separators for geothermal applications

Goswami, 2000]

- A combined thermal power and refrigeration cycle
- Characteristics of this cycle is that it can use low heat source temperatures bellow 200 C

□ [Wang et al.'s work, 2003]

• Used binary cycle with mid and low temperature heat recovery

□ [Liu and Zhang, 2007]

• Cogeneration system of refrigeration and power

□ [Sirko Ogriseck, 2009]

• Using geothermal power plant as a heat source of Kalina cycle

□ [Philippe Roy, 2010]

• Thermodynamic Analysis and Result of using ammonia-water in the organic Rankine cycle

NH3-H2O

Model validation

Combined Cycle

Combined \rightarrow Kalina cycle + LiBr/H₂O absorption heat transformer

Thermodynamic analysis of combined cycle

subsystems	Exergy relations	Energy relations			
Kalina cycle					
Evaporator 1	$E_{D,eva1} = T_0 \left[m_4 (s_5 - s_4) + m_{13} (s_{14} - s_{13}) \right]$	$m_4(h_5-h_4) = m_{13}(h_{14}-h_{13})$			
Separator	$E_{D,\text{sep}} = T_0 \left[m_6 s_6 + m_8 s_8 - m_5 s_5 \right]$	$m_5 x_5 = m_6 x_6 + m_8 x_8$			
Turbine	$E_{D,Tur} = T_0 \left[m_6 (s_6 - s_7) \right]$	$\eta_t = \frac{h_6 - h_7}{h_6 - h_{7s}}, w_t = m_6(h_6 - h_7)$			
LTR	$E_{D,LTR} = T_0 \left[m_{11}(s_{12} - s_{11}) + m_2(s_3 - s_2) \right]$	$m_2(h_3 - h_2) = m_{11}(h_{12} - h_{11})$			
HTR	$E_{D,HTR} = T_0 \left[m_3(s_4 - s_3) + m_8(s_9 - s_8) \right]$	$m_3(h_4 - h_3) = m_8(h_9 - h_8)$			
Pump 1	$E_{D,P1} = T_0 [m_1(s_2 - s_1)]$	$w_{p,1} = v_2(h_2 - h_1)$			
Condenser 1	$E_{D,Con1} = T_0 \left[m_1 (s_1 - s_{12}) + m_{34} (s_{35} - s_{34}) \right]$	$Q_{cond,1} = m_1(h_1 - h_{12})$			
LiBr/H ₂ O cycle	e				
Evaporator 2	$E_{D,eva2} = T_0 \left[m_{22} (s_{23} - s_{22}) + m_{15} (s_{15} - s_{13}) \right]$	$m_{13}(h_{13} - h_{16}) = m_{22}(h_{22} - h_{23})$			
Absorber	$E_{D,Abs} = T_0 \left[(m_{17}s_{17} - m_{23}s_{23} - m_{26}s_{26}) + m_{29}(s_{30} - s_{29}) \right]$	$m_{30}(h_{30} - h_{29}) = m_{17}h_{17} - m_{23}h_{23} - m_{26}h_{26}$			
HEX	$E_{D,eva2} = T_0 \left[m_{17} (s_{18} - s_{17}) + m_{25} (s_{26} - s_{25}) \right]$	$m_{17}(h_{17} - h_{18}) = m_{25}(h_{25} - h_{26})$			
Generator	$E_{D,Abs} = T_0 \left[(m_{20}s_{20} - m_{24}s_{24} - m_{19}s_{19}) + m_{14}(s_{14} - s_{13}) \right]$	$m_{13}(h_{13} - h_{16}) = m_{19}h_{19} - m_{20}h_{20} - m_{24}h_{24}$			
Th. valve	$E_{D,V} = T_0 \left[m_{24} (s_{25} - s_{24}) \right]$	$m_{18}h_{18} = m_{19}h_{19}$			
Pump 2	$E_{D,P2} = T_0 \left[m_{21} (s_{22} - s_{21}) \right]$	$w_{p,2} = v_{21}(h_{22} - h_{21})$			
Pump 3	$E_{D,P3} = T_0 \left[m_{24} \left(s_{25} - s_{24} \right) \right]$	$w_{p,3} = v_{24}(h_{25} - h_{24})$			
Pump 4	$E_{D,P4} = T_0 \left[m_{28} (s_{29} - s_{28}) \right]$	$w_{p,4} = v_{28}(h_{29} - h_{28})$			
Condenser 2	$E_{D,Con2} = \overline{T_0} \left[m_{20}(s_{21} - s_{20}) + m_{35}(s_{36} - s_{35}) \right]$	$Q_{cond,2} = m_{20}(h_{20} - h_{21})$			

Performance evaluation

First law efficiency

 $\eta_{\rm I} = \frac{\dot{W}_{net} + \dot{Q}_{abs}}{\dot{Q}_{in}}$

$$\dot{W}_{net} = \dot{W}_{Tur} - (\dot{W}_{P,1} + \dot{W}_{P,2} + \dot{W}_{P,3} + \dot{W}_{P,4})$$

 $\dot{Q}_{abs} = m_{30}(h_{31} - h_{30})$

 $\dot{Q}_{in} = m_1(h_1 - h_{17})$

Second law efficiency

 $\eta_{\rm II} = \frac{\dot{W}_{net} + \dot{E}_{abs}}{\dot{E}_{in}}$

 $\dot{E}_{abs} = \dot{E}_{31} - \dot{E}_{30}$

$$\dot{E}_{in} = m_1 [(h_1 - h_{17}) - T_0(s_1 - s_{17})]$$

Thermoeconomic analysis

$$\sum \dot{C}_{out,k} + \dot{C}_{w,k} = \sum \dot{C}_{in,k} + \dot{C}_{q,k} + \dot{Z}_{k}$$

$$\dot{Z}_{k} = \dot{Z}_{k}^{CI} + \dot{Z}_{k}^{OM}$$

$$\dot{Z}_{k}^{CI} = (\frac{CRF}{\tau})Z_{k}$$

$$CRF = \frac{i_r (1 + i_r)^n}{(1 + i_r)^n - 1}$$

 $\dot{Z}_{k}^{OM} = \gamma_{k} Z_{k} + \omega_{k} \dot{E}_{P,k} + \dot{R}_{k}$

S-CO2/ Kalina

The input data assumed in the simulation

Temperature of the Environment	25°C
Pressure of the Environment	1 bar
Temperature of the water from the well	124°C
Temperature of exit water of eveporator1	80°C
Turbine inlet pressure	32.3bar
Temperature of the water to the well	T ₁₄ -5
Temperature of the solution exit from the condenser	T ₀ +5
Temperature of the Generator and eveporator2	T ₁₆ -3
Mass flow rate of geothermal water	89 kg/s
Temperature of LiBr/H ₂ O solution	110°C
Mass flow rate of seawater	12 kg/s
Ammonia mass fraction	82%
Turbine isentropic efficiency	90%
Pump isentropic efficiency	80%

S-CO2/ ORCIHX

Thermodynamic properties and cost of streams for the combined cycle

state	t	Р	х	m	Ė _{ph}	Ė _{ch}	Ė	Costs Ċ	
	(°C)	(bar)		(kg/s)	(kJ/kg)	(kJ/kgk)			с
1	20	7.124	0	17.82	3,100	289,132	292,231	2455	2.333
2	20.6	32.3		17.82	3,164	289,132	292,295	2455	2.333
3	44.6	32.3		17.82	3,214	289,132	292,345	2457	2.335
4	65.6	32.3		17.82	3,382	289,132	292,513	2460	2.337
5	118	32.3	0.6824	17.82	6,388	289,132	295,520	2480	2.331
6	118	32.3	1	12.16	5,915	233,147	239,065	2007	2.332
7	46.4	7.124	0.9417	12.16	3,212	233,147	236,359	1984	2.332
8	118	32.3	0	5.658	470.4	55,984	56,455	475.4	2.339
9	49.6	32.3		5.658	170.8	55,984	56,155	472.9	2.339
10	50	7.124		5.658	154.5	55,984	56,139	472.7	2.339
11	49.6	7.124	0.6382	17.82	3,364	289,132	292,496	2457	2.333
12	40.4	7.124	0.5778	17.82	3,228	289,132	292,359	2456	2.333
13	124	2.25		89	5,085	0	5,085	23.8	1.3
14	80	2.25		89	1,689	0	1,689	7.906	1.3
14-a	80	2.25	· · · · · · · · · ·	40.89	913.2	0	913.2	4.274	1.3
14-b	80	2.25		48.11	776	0	776	3.632	1.3
15	75	2.25		40.89	647.4	0	647.4	3.03	1.3
16	75	2.25		48.11	761.8	0	761.8	3.565	
17	75	2.25		89	1,409	0	1,409	6.595	1.3
18	72	0.04246		0.4029	18.74	0	18.74	4.012	59.48
19	30	0.04246		0.4029	0.07032		0.07032	0.01506	59.48
20	30	0.3397	-	0.4029	0.08235	0	0.08235	0.02232	75.29
21	72	0.3397	20000	0.4029	134.4	0	134.4	1.224	2.529
22	110	0.3397	0.5511	5.034	229.5	5.643	235.2	5.979	7.063
23	92.73	0.3397	0.5511	5.034	193.1	5.643	198.8	5.055	7.063
24	64.72	0.04246	0.5511	5.034	439.2	5.643	439.2	11.31	7.063
25	72	0.04246	0.5982	4.631	274.1	4.647	278.8	8.466	8.437
26	81.27	0.3397	0.5982	4.631	286.8	4.647	291.5	9.307	8.87
27	101.4	0.3397	0.5982	4.631	319.7	4.647	324.3	10.44	8.942
28	25	1		0.365	0.03545	0	0.03545	0	0
29	98.19	0.9494		15	488.1	0	488.1	20.4	11.61
30	98.19	1.013		15	488.3	0	488.3	20.41	11.61
31	100	1.013		15	676.6	0	676.6	27.19	11.15
32	100	1.013		14.67	498.6	0	498.6	20.4	11.36
33	100	1.013		0.365	178	0	178	8.255	12.82
34	15	1	0	677.5	485.2	0	485.2	0	0
35	20	1		677.5	119.6	0	119.6	3.28	7.617
36	15	1		48.33	34.61	0	34.61	0	0
37	20	1		48.33	8.532	0	8.532	4.246	138.2
38	-	-					2452	22.74	2.257
39							80.59	0.7473	2.256
40	-	-		-			0.01203	0.00011	2.576
41				-			83.04	0.7701	2.576
42							0.1108	0.00102	2.576
			1 1 1 1 1 1 1 1 1	1.1.1.1.1.1.1.1		THE R. P. LEWIS CO., NAME			A REAL PROPERTY OF A REAL PROPERTY OF

S-CO2/ ORCIHX

Introduction

Basic Concept

Lit. Review

Model Validation

Analysis and Result

The performance of the combined cycle

Turbine work (kW)	2452
Condenser 1 heat rejection (kW)	14172
Pump 1 work (kW)	80.59
Pump 2 work (kW)	0.01203
Pump 3 work (kW)	83.04
Pump 4 work (kW)	0.1108
Evaporator 1 heat input (kW)	16543
Evaporator 2 heat input (kW)	1009
Absorber heat transfer (kW)	938.3
Generator heat transfer (kW)	857.3
Condenser 2 heat rejection (kW)	1011
Net power output of Kalina(kW)	2371
Net power output and absorber heat (kW)	3226
Heat input (kW)	18409
Exergy input (kW)	3676
Thermal efficiency (%)	17.52
Exergy efficiency (%)	67.38

Cost analysis result for combined cycle

subsystems	$\dot{E}_{F,k}$ (kW)	$\dot{E}_{P,k}$ (kW)	$\dot{E}_{D,k}$ (kW)	$Y_{D,k}(\%)$	$Y_{D,k}^{*}(\%)$	$\mathcal{E}_{k}(\%)$		
Kalina cycle								
Evaporator 1	3396	3007	389	4.71	24.46	88.54		
Turbine	2706	2452	254	3.06	15.97	90.61		
LTR	137	50	87	1.04	5.47	36.49		
HTR	300	168	132	1.59	0.1	56		
Separator & valve	316	300	16	0.19	1.006	94.93		
Pump 1	80.59	64	16.59	0.19	1.04	79.41		
Condenser 1	364.6	128	236.6	2.85	14.88	35.1		
LiBr/H ₂ O cycle								
Evaporator 2	134.31	14.2	118.31	1.42	7.44	10.57		
Absorber	223.5	188.5	35	0.42	2.20	84.34		
HEX	36.4	32.8	3.6	0.04	0.22	90.1		
Generator	492.74	265.8	226.94	2.73	14.27	53.94		
Pump 2	0.01204	0.01203	0.0001					
Pump 3	83.04	12.7	70.34	0.84	4.42	15.3		
Pump 4	0.1108	0.11	0.0008					
Condenser 2	26.078	18.66	4.418	0.05	0.27	71.55		
Overall system	8296.4	6701.8	1589.8	19.16	100	80.77		

S-CO2/ ORCIHX

Basic Concept

Lit. Review

Analysis and Result

The effect of turbine inlet pressure on the Kalina and combined cycle energy efficiency for different evaporator exit temperature

The effect of turbine inlet pressure on the turbine inlet and outlet enthalpy and their differences

The effect of turbine inlet pressure on the Kalina and combined cycle exergy efficiency for different evaporator exit temperature.

The effect of evaporator exit temperature on first and second law efficiency 17.1 65.8 17 65.45 16.9 65.1 (%) 64.75 64.4 64.4 second law efficiency First law efficiency (%) 16.8 16.7 16.6 16.5 16.4 16.3 second law effiency 16.2 63.7 first law effiency 16.1 76 78 75 77 79 80 Evaporator exit temperature (°C) S-CO2/ NH3-H2O Model Validation Introduction **Basic Concept** Lit. Review Analysis and Result

The effect of evaporator exit temperature on network and input heat of combined cycle Net work rate (kW) 17300 (M) 17280 17260 17260 the trade to the net work output of combined cycle input heat Evaporator exit temperature (°C) S-CO2/ NH3-H2O Introduction **Basic Concept** Lit. Review Model Validation Analysis and Result

The effect of turbine inlet pressure on the produced pure water 0.36 0.33 Pure water mass flow rate (kg/s) 0.3 0.27 0.24 0.21 0.18 -∆--T₁₃=75°C <mark>-∞-</mark> T₁₃=78°C 0.15 **-**•−T₁₃=80°C 0.12 30 45 35 40 50 55 60 Turbine inlet pressure (bar) S-CO2/ NH3-H2O Introduction Analysis and Result **Basic Concept** Lit. Review Model Validation

The effect of turbine inlet pressure on the first law efficiency for several values of ammonia concentration

The effect of temperature of hot water exiting the evaporator1 on the pure water production

conclusion

- The proposed cycle which is a combination of Kalina cycle with ammonia water as working fluid and a heat transformer cycle with lithium bromide water as working fluid, can be a proper substitution for conventional geothermal power plants. The production of pure water by the proposed cycle is yet another advantage for the proposed cycle. The first and second law efficiencies of the proposed cycle are around 24% and 12.3% higher than the corresponding values for the Kalina cycle.
- The first and second law efficiencies are maximized at some particular values of pressure at the turbine inlet. The maximum values are increased with increasing ammonia concentration at evaporator1 outlet and increasing turbine inlet pressure.
- With increasing hot water temperature at the evaporator1 outlet, the first law efficiency increases and the second law efficiency decreases. However, higher temperature is suggested for the hot water exiting the evaporator1 as the second law efficiency is more meaningful criteria.
- As the turbine inlet pressure increases and/or hot water temperature at the exit of evaporatore1 decreases, the produced pure water mass flow rate decreases.
- The proposed cycle produces 2.94 MW and 0.34 kg/s pure water using geothermal water with a mass flow rate of 89 kg/s at a temperature of 124 °C.
- The evaporatore1 has the highest contribution in the cycle exergy destruction so that more attention is needed in design of this component.

Thanks for your attention