

The 2nd International Electronic Conference on Antioxidants

07-09 April 2025 | Online

In Silico Design and Discovery of Novel 2-pyrazoline Methanone Derivatives as Antioxidant Agents for Cosmetic Applications: A Bioinformatics Analysis and Molecular Docking Study

Yusuf Jimoh ¹*, Asmau Nasir Hamza ¹, Maryam Abdullahi ¹, Abdullahi Yunusa Idris ¹, Amina Busola Olorukooba ², Lukman Ali Hassan ¹ and Ibrahim Gidado ³

¹ Department of Pharmaceutical and Medicinal Chemistry, Ahmadu Bello University, Zaria 810107, Nigeria

² Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Abuja, Gwagwalada-Nigeria

³ Department of Chemistry, Federal College of Education, Yola, Nigeria

INTRODUCTION & AIM

The cosmetic industry is actively looking for innovative compounds to combat oxidative stress and prevent premature aging, with a specific focus on the role of antioxidants [1,2]. There is a trend towards using natural and synthetic antioxidants in cosmetic formulations due to increasing consumer awareness and demand for effective anti-aging products [2].

2-pyrazoline derivatives have emerged as a versatile and promising class of compounds with a wide range of biological activities, including potential antioxidant properties. This family of compounds has been extensively studied for various potential applications, such as antidepressant, antimalarial, and anticancer properties [3]. Their versatility suggests potential for application in cosmetic science, particularly as antioxidant agents.

RESULTS & DISCUSSION

Table 1: Analysis of theoretical oral bioavailability of the designed compounds based on Lipinski's rule of five, GI absorption, predicted LD₅₀ and Toxicity Class

Compound ID	Lipinski's r	ule of fiv						
	Mol.Wt ^a	HbA	HbD	MLogP	GI	Inference	LD ₅₀	Toxicity class
P25	420.89	4	0	3.89	High	Pass	1000mg/kg	IV
P27	450.91	5	0	3.55	High	Pass	1000mg/kg	IV
P28	455.33	4	0	4.36	High	Pass	1000mg/kg	IV
P29	395.28	2	0	5.1	High	Pass	1000mg/kg	IV
P30	485.36	5	0	4.02	High	Pass	1000mg/kg	IV
P31	431.44	6	0	2.5	High	Pass	1000mg/kg	IV
P33	461.47	7	0	2.2	High	Pass	1000mg/kg	IV
P34	404.43	5	0	3.79	High	Pass	1880mg/kg	IV
P37	370.4	4	0	3.61	High	Pass	1660mg/kg	IV

^a Molecular weight in g/mol, ^b [5] (Mwt≤500, MLogP≤4.15, N or O≤10, NH and OH≤5) and LD₅₀= Lethal dose 50

The development of new cosmetic ingredients traditionally involves timeconsuming and costly experimental processes. However, the advent of *in silico* design and molecular docking studies has revolutionized the field of drug discovery and cosmetic science [4].

The present study aims to leverage these advanced computational techniques to design and discover novel 2-pyrazoline methanone derivatives as potential antioxidant agents for cosmetic applications. By employing a comprehensive bioinformatics analysis and molecular docking approach, we seek to identify compounds with optimal binding affinities to Human erythrocyte catalase, a key enzyme in the antioxidant defense system.

METHOD

2D Structure creation and 3D Optimization

In Silico ADME and Toxicity Predictions

Ligands and Enzymes Preparation

Table 2: Displays the crystal structure of enzyme complexes with the re-dockedligand superimposed on the crystal structure for validation purposes

Crystal	structure	complex	Crystal structure complex with
Enzyme a	and Ligand)		Re-docked ligand (Validation)

The cyan-blue colored molecule represents the re-docked ligand, while the red colored molecule indicates the co-crystallized ligand

Table 3: Binding affinity of the designed 2-pyrzoline methanone compounds against the target enzyme

Compound code	Human erythrocyte catalase (1DGB) kcal/mol
HEM	-14.1
P25	-10.4
P27	-10.5
P28	-10.4
P29	-10.3
P30	-10.6
P31	-9.9
P33	-10.2
P34	-10.4
P37	-8.7

HEM= co-crystalized ligand

Figure 1: 3D and 2D Binding Pose Interaction of P27 (A) and P30 (B) at the Binding Site of Human Erythrocyte Catalase

CONCLUSION

This study presents a comprehensive *in silico* design and discovery of novel 2pyrazoline methanone derivatives as potential antioxidant agents for cosmetic applications. Through a rigorous bioinformatics analysis and molecular docking study, we have identified promising compounds that exhibit strong binding affinities to Human erythrocyte catalase, a key enzyme in the antioxidant defense system.

FUTURE WORK / REFERENCES

Future research should focus on in vitro and in vivo studies to assess the actual

performance of these derivatives in biological systems.

References

[1] Hergesell K, Valentová K, Velebný V, Vávrová K, Dolečková I. Common Cosmetic Compounds Can Reduce Air Pollution-Induced Oxidative Stress and Pro-Inflammatory Response in the Skin. Skin Pharmacol Physiol 2022;35:156–65. https://doi.org/10.1159/000522276.

[2] Choi HY, Lee YJ, Kim CM, Lee Y-M. Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products. Cosmetics 2024;11. https://doi.org/10.3390/cosmetics11050157.

[3] Abou-Zied HA, Beshr EAM, Hayallah AM, Abdel-Aziz M. Emerging insights into pyrazoline motifs: A comprehensive exploration of biological mechanisms and prospects for future advancements. J Mol Struct 2024;1296. https://doi.org/10.1016/j.molstruc.2023.136807.

[4] Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023;13:13398. https://doi.org/10.1038/s41598-023-40160-2.

[5] Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med 2021;137:104851. https://doi.org/https://doi.org/10.1016/j.compbiomed.2021.104851.