

The 3rd International Electronic Conference on Catalysis Sciences 23-25 April 2025 | Online

Catalytic Activity of metal oxide nanoparticles derived from Electronic waste through green synthesis

Sedevino Sophia¹ and Vidya Shetty K²

Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal-575025, India

Presenting author¹: <u>sedevinokirha@gmail.com</u> Corresponding author²: <u>vidyaks95@nitk.edu.in</u>

1. Background

- Electronic Waste (E-Waste) Challenge: Globally, total ewaste generation reached 62 billion kg in 2022. Estimated to increase up to 120 million metric tonnes by 2050.

Green Nanotechnology: One of the ways to recover and reuse such waste from polluting the landfills and to eliminate the discovery of new mines is the synthesis of nanoparticles using secondary sources

3. Results and discussions Characterization:

- Cu_xO/Cu-based nanocomposites are synthesized using the cell-free supernatant of Alcaligenes aquatilis from the waste-PCBs of mobile phones.
- Nanoparticles that are newly synthesized to evaluate the catalytic activity using a model reaction known as 4nitrophenol reduction to form 4-aminophenol, an useful intermediate precursors in most of the pharmaceutical industries.

- Deconvoluted peaks of O1s shows the presence of oxides of metals in the lattice and adsorbed water content.
- Deconvoluted peaks: Presence of Cu(I) and Cu(II) oxidation states.
- FTIR: Biological moieties and Cu-O bands
- HRTEM: Average size distribution of 13.7 nm
- SAED pattern: presence of CuO, Cu, and Cu_2O as illustrated in XRD analysis.

Catalytic activity of 4-nitrophenol reduction

References:

- Baldé, C. P., Kuehr, R., Yamamoto, T., McDonald, R., D'Angelo, E., Althaf, S., Bel, G., Deubzer, O., Fernandez-Cubillo, E., Vanessa Forti, V., Gray, S. H., Honda, S., Iattoni, G., Khetriwal, D. S., Cortemiglia, V. L. di Y. L., Nnorom, I., Pralat, N., and Wagner, M. (2024). The Global E-waste Monitor 2024.
- S. Agarwalla, V. Shetty Kodialbail, Extracellular biosynthesis of CuO-TiO2 nanocomposites using Alcaligenes aquatilis for the photodegradation of reactive and azo dyes under visible light irradiation, Environ. Sci. Pollut. Res. (2023)
- Y. Yu, H. Guo, P. Wang, S. Zhai, J. Han, W. Li, Y. Wang, Y. Wang, Catalytic reduction of 4-nitrophenol using Cu/Cu2O nanocomposites based on magnetic maize straw, Res. Chem. Intermed. 49 (2023) 381-397.

- 4-NP reduction without nanocomposite catalyst resulted in a rate constant of 0.00315 min⁻¹ with 22% reduction in 30 min.
- Follows pseudo-first-order reaction.
- Addition of Cu_xO/Cu-based nanocomposite catalyst showed catalytic activity of 90.58% in 30 min reduction with a rate constant of 0.47 min⁻¹.

Conclusions:

 \checkmark Successfully synthesized Cu_xO/Cu-based nanocomposites from electronic waste using Alcaligenes aquatilis bacteria. ✓ Catalytically active with 4-nitrophenol reduction of 90.58% and reduction rate constant of 0.47 min⁻¹.