

# The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

Development of a Solid Phase Extraction Method for Cadmium and Nickel Using Stearic Acid Modified Activated Carbon

Nakano Minami<sup>1</sup>, Mai Furukawa<sup>1</sup>, Ikki Tateishi<sup>2</sup>, Hideyuki Katsumata<sup>1</sup>, Satoshi Kaneco<sup>1</sup> <sup>1</sup>Department of Applied Chemistry, Graduate School of Engineering, Mie University, Japan <sup>2</sup>Contor for Global Environment Education & Poscarch, Mie University, Japan

<sup>2</sup>Center for Global Environment Education & Research, Mie University, Japan



Experimental conditions: stirring time 5 min, adsorbent amount 50 mg, initial pH 3, desorbent 0.1 mol  $L^{-1}$  HNO<sub>3</sub> 3 mL, sample volume 200 mL

Low cost of equipment

Easy operation

Sensitive to physical and chemical interference Narrow quantitative range

High sensitivity for measurement

Preconcentration of analytes prior to determination

### **Preconcentration**

Purpose: To concentrate the analyte for measurement Solid-phase extraction (SPE): A sample solution is passed through a solid phase, allowing separate the target material to be separated from impurities.

### Purpose of this study

Preconcentration of trace cadmium and nickel using stearic acid modified activated carbon (SA-CAA)

## METHOD



RESULTS

0.1 mol L<sup>-1</sup> HNO<sub>3</sub> 3 mL, sample volume 200 mL

adsorbent amount 50 mg, initial pH 3, desorbent

Experimental conditions: stirring time 5 min,



Stirring time (min) Fig. 6. Examination of stirring time. Experimental conditions: adsorbent amount 50 mg, initial pH 3, desorbent 0.1 mol L<sup>-1</sup> HNO<sub>3</sub> 3 mL, sample volume 200 mL



Fig. 8. Examination of initial pH. Experimental conditions: stirring time 20 min, adsorbent amount 50 mg, desorbent 0.1 mol  $L^{-1}$  HNO<sub>3</sub> 3 mL, sample volume 200 mL

| Table 2. Optimum conditions. |                             |  |  |  |
|------------------------------|-----------------------------|--|--|--|
| SA amount (CAA 1 g)          | 0.2 g                       |  |  |  |
| Stirring time                | 20 min                      |  |  |  |
| Adsorbent amount             | 50 mg                       |  |  |  |
| Initial pH                   | 3                           |  |  |  |
| Desorbent                    | 0.1 M HNO <sub>3</sub> 4 mL |  |  |  |
| Sample volume                | 300 mL                      |  |  |  |
|                              |                             |  |  |  |
|                              |                             |  |  |  |



Adsorbent amount (mg) Fig. 7. Examination of adsorbent amount. Experimental conditions: stirring time 20 min, initial pH 3, desorbent 0.1 mol  $L^{-1}$  HNO<sub>3</sub> 3 mL, sample volume 200 mL



Fig. 9. Examination of sample volume. Experimental conditions: stirring time 20 min, adsorbent amount 50 mg, initial pH 3, desorbent 0.1 mol L<sup>-1</sup> HNO<sub>3</sub> 4 mL

#### Table 3. Analytical performance.

|                                                                   | Cd       | Ni    |
|-------------------------------------------------------------------|----------|-------|
| Linear range<br>(ppb)                                             | 0.01~0.1 | 0.1~1 |
| Correlation coefficient (R <sup>2</sup> )                         | 0.99     | 0.99  |
| Limit of detection<br>(3S <sup>(a)</sup> /N <sup>(b)</sup> , ppt) | 3        | 205   |
| Limit of quantitation<br>(10S/N, ppt)                             | 21       | 684   |
| <b>RSD</b> <sup>(c)</sup> (%)<br>(Cd:0.05 ppb, Ni:1 ppb,<br>n=9)  | 12.6     | 14.3  |

(a) signal, (b) noise, (c) relative standard deviation.

## CONCLUSION

- ✓ The use of stearic acid-modified activated carbon as the adsorbent showed selectivity for Cd and Ni, with improved recovery compared to unmodified activated carbon.
- ✓ The detection limits were 3 ppt for Cd and 205 ppt for Ni in this method.

## FUTURE WORK / REFERENCES

✓ The effects of matrix elements (e.g., Mg, Ca, Na, K) on this method will be investigated, and its application to real samples will be studied.

# ECCS2025.sciforum.net

Table 1. BET surface area, total pore volume, and average pore diameter of CAA and SA-CAA.

|        | V <sub>m</sub><br>(cm³ (STP) g⁻¹) | a <sub>s</sub> BET<br>(m² g⁻¹) | V <sub>p</sub><br>(cm³ g⁻¹) | d <sub>p</sub><br>(nm) |
|--------|-----------------------------------|--------------------------------|-----------------------------|------------------------|
| CAA    | 262.9                             | 1140                           | 0.96                        | 3.3                    |
| SA-CAA | 268.9                             | 1170                           | 0.97                        | 3.3                    |

 $V_{\rm m}$ : Monolayer adsorption volume,  $a_{\rm s}$ BET: BET Specific surface area,  $V_{\rm p}$ : Full pore volume,  $d_{\rm p}$ : Average maximum diameter.

Characterization

BET





Fig. 3. SEM images of (a) CAA and (b) SA-CAA.