

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

sciforum-112643

Development of photocatalytic reduction method of Cr(VI) with modified g-C₃N₄

Miyu Sato^{1*}, Mai Furukawa¹, Ikki Tateishi^{2*}, Hideyuki Katsumata¹, and Satoshi Kaneco¹
 ¹ Department of Applied Chemistry, Graduate School of Engineering, Mie University
 ²Center for Global Environmental Education & Research, Mie University)

INTRODUCTION & AIM

Heavy metal pollution

Cr(VI) is highly toxic and has adverse effects on ecosystems. It is preferable to reduce it to **Cr(III**) which is less toxic.

In our research, we use graphitic carbon nitride $(g-C_3N_4)$ as photocatalyst.

RESULTS & DISCUSSION

Fig.4. Effect of EDTA on the reduction of Cr(VI) Fig.5. Effect of T7.5-g-C₃N₄ amount on the reduction of Cr(VI).

MDPI

[GOOD]

High thermal and chemical stability
Metal free

Cr(VI) solution Photocatalyst

[BAD]

 The high recombination rates of electrons(e⁻) and holes(h⁺)

Previous : g-C₃N₄ has low reactivity in the visible light range. This research : We modify g-C₃N₄ to introduce electron capture groups. [AIM] Practical application in the visible light range

METHOD

with T7.5-g-C₃N₄.

EDTA : 300 ppm, Catalyst amount : 15 mg was optimal conditions.

RESULTS & DISCUSSION

The terminal amino group is substituted with -OH or an aromatic ring. \rightarrow **Facilitate electron transfer**.

CONCLUSION

• **T7.5-g-C₃N₄** exhibited a rate constant **150 times higher** than that of stand-alone $g-C_3N_4(T0.0-g-C_3N_4)$.

• One of the reasons for the increase in the reduction rate may be the **increase** in the area of **active surfaces**.

FUTURE WORK / REFERENCES

• We do further characterization.

PL : Movement of excited electrons, XPS : Structure of catalystWe will experiment about the active species and the recyclability of the catalyst.

ECCS2025.sciforum.net