

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

Photocatalytic dye degradation using modified g-C₃N₄

Hinata Suzuki 1, Hideyuki Katsumata 1, Ikki Tateishi 2, Mai Furukawa 1, Satoshi Kaneco 1 **Department of Applied Chemistry, Graduate School of Engineering, Mie University 1 Center for Global Environment Education & Research, Mie University 2**

RESULTS & DISCUSSION

-CN-Br

-CN-S

-CN-U

1.2

1

0.8

0.4

0.2

dark

From dye degradation experiment results, for MO, CN-N degraded the most. For MB, CN-U and CN-N degraded the most.

MDPI

experiment results, The main active species is $\cdot O^{2-}$. The MO was decolorized by the • O²⁻ produced by the excited electrons. The h⁺ in the VB reacts with

CONCLUSION

- Successful calcined of g-C₃N₄ incorporating heteroatoms
- CN-N showed the best photocatalytic activity
- We think this is due to improved optical properties resulting from the incorporation of heteroatoms.

FUTURE WORK / REFERENCES

Perform characterization

: 10⁻³ (min⁻¹)

× 2

 $\boldsymbol{\prec}$

3

1

- Consider other heteroatoms (ex. Cl, Pyridine ring...)
- Consider the amount of Photocatalyst used in the experiment

ECCS2025.sciforum.net