

The 3rd International Electronic **Conference on Catalysis Sciences**

23-25 April 2025 | Online

Cu-modified Zn₆In₂S₉ photocatalyst for hydrogen production under visible-light irradiation

Shota Fukuishi1, Hideyuki Katsumata1, Ikki Tateishi2, Mai Furukawa1, and Satoshi Kaneco1 Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie, Japan 1 Global Environment Center for Education & Research, Mie University, Tsu, Mie, Japan 2

emit carbon dioxide.

Water **Fuel cell**

• Advantages of Zn₆In₂S₉

- Narrow band gap
 Visible light responsiveness
- Chemical stability
 Unique two-dimensional layered structure
- Cost can be reduced compared to ZnIn₂S₄

This study

The aim of this study was to improve the photocatalytic activity of indium zinc sulfide while reducing the use of expensive indium.

RESULTS & DISCUSIONS

- The hydrogen production rate of $Zn_{5,7}Cu_{0,3}In_2S_9$ is approximately five times higher than that of $Zn_6In_2S_9$.
- Fig. 4 showed good hydrogen production activity
- Fig. 5 showed that the trend was consistent with DRS spectrum results, confirming that hydrogen production occurs from the photocatalyst.

The recombination of electron-

hole pairs is suppressed.

Cleaning with

water and ethanol Vacuum drying

Zn_{5.4}Cu_{0.6}In₂S₉

Autoclave (180°C, 18h)

Fig. 1. Preparation of zinc indium sulfide

Table 2. Experimental conditions.

2.430

Zn_{5.6}Cu_{0.4}In₂S₉, Zn_{5.4}Cu_{0.6}In₂S₉

 $Zn_{5.9}Cu_{0.1}In_2S_9$, $Zn_{5.8}Cu_{0.2}In_2S_9$, $Zn_{5.7}Cu_{0.3}In_2S_9$,

0.900

UV cut off filter ($\lambda \ge 420 \text{ nm}$

Xe lamp (10 mW/cm²

Na2S + Na2SO3 solution

4.050

0.270

Septum for gas sample analysis

Temperature adjustable stirrer

Fig. 2. Photoreactor for

photocatalytic hydrogen production.

response of photocatalysts.

①Electrons and holes are separated by light irradiation. (2) The holes oxidize the sacrificial agent, producing protons. ③Photoexcited electrons in the conduction band reduce H⁺ on Pt, producing hydrogen.

• It can be seen that the addition of copper results in a lower interfacial resistance than the original indium zinc sulfide.

• The current value of $Zn_{5.7}Cu_{0.3}In_2S_9$ was the highest, indicating high charge transfer efficiency.

MDPI

CONCLUSION

- The hydrogen production rate of $Zn_{5.7}Cu_{0.3}In_2S_9$ is approximately five times higher than that of $Zn_6In_2S_9$.
- Zn_{5.7}Cu_{0.3}In₂S₉ showed high stability.
- The addition of copper caused an expansion of the light absorption range and suppression of recombination of electron-hole pairs.
- The addition of copper did not change the structure.

FUTURE WORK / REFERENCES

• J. Ye, Z. Fan, Z. Wang, Y. Wang, J. Li, Y. Xie, Y. Ling and Y. Chen, Fuel, 373(2024)132401.

ECCS2025.sciforum.net