

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

Assessment of the photo-catalytic efficiency of Pd-M (M=Cu, Ag) nanoparticles supported on TiO₂

Anca Vasile*, Florica Papa, Gianina Dobrescu, Veronica Bratan, Ioan Balint

"Ilie Murgulescu" Institute of Physical-Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania *Correspondence: avasile@icf.ro

INTRODUCTION & AIM

Controlling the size, shape and dispersion of metal Nps^{1, 2} is essential for an enhanced catalytic activity³

Modifying TiO₂ with Pd, as well as of Cu and Ag co-catalysts

RESULTS & DISCUSSION

MDPI

Catalysts characterization

Catalytic/photocatalytic reduction of NO₃

✤ Investigation of the physical and chemical properties of the Pd-M (M=Cu, Ag)/TiO₂ catalysts.
♦ Study of the effect of modifying TiO₂ with Pd-Cu and Pd-Ag co-catalysts on the photocatalytic efficiency exhibited in the photocatalytic H₂ generation and nitrate reduction reaction.

METHOD				
TEM Fractal XR analysis	D CO chemisorption	XPS	TPR	UV-Vis
Synthesis Metallic/ Bimetallic Nanoparticles	d Ag 50 nm 50 nm	Cu So nm		
The alkaline polyol method- a modified protocol ¹ PdCu/TiO ₂	PdAg 50 nm	► T Pd- fine par	EM image of t Cu Nps contai ely dispersed ticles (3-5 nm	the ns)
PVP (MW = 8,000) Bime Nanopa	ported tallic articles		

		•
Fractal	Ana	VSIS

The Correlation Function Method

Conversing the grey-level pixel as a height, the fractal
dimensions was evaluated⁴.

Sample	Method	Fractal	Selt-	Linear
		Dimension	similarity	correlation
			Limits (nm)	coefficient
	Correlation	2.745 ± 0.002	0.8 – 3.5	0.997
	Method			
PdAgNp/	Correlation	$\textbf{2.645} \pm \textbf{0.017}$	0.4 - 1	0.984
TiO	Method	$\textbf{2.823} \pm \textbf{0.005}$	1-1.6	0.989
1102		$\textbf{2.700} \pm \textbf{0.001}$	1.6 - 20	0.999
	Variable Length	$\textbf{2.714} \pm \textbf{0.005}$	2-34	0.991
	Scale Method			
PdCuNp/	Correlation	$\textbf{2.819} \pm \textbf{0.002}$	1.2 – 3	0.992
TiO ₂	Method	$\textbf{2.706} \pm \textbf{0.001}$	3 - 12	0.999
	Variable Length	$\textbf{2.846} \pm \textbf{0.005}$	2 – 9	0.993
	Scale Method	$\textbf{2.703} \pm \textbf{0.007}$	9 - 28	0.990

APS				
Sample	Binding Energy (eV)			
Sample	Pd 3d	Ag 3d	Cu2p	
PdAg Np	A=334.17	A=367.32		
	B=339.51	B=373.37		
PdCu Np	A=334.90	-	A=932.50	✤Pd ²⁺ / F
	B=340.12			∜ Cu ¹⁺ /(
PdCu /TiO ₂	A=335.51		A=933.02	
	B=340.59			

NO₃⁻ Reduction Reaction

*150 mL NO₃⁻ solution,100ppm; 0.1g cat.; H_2

Photocatalytic H₂ generation

70 mL NO₃⁻ solution,100ppm; 0.035g cat.; D(Ar)=30 cm³/min; T(reactor)=18 °C

Light source-high pressure lamp, 150 W, inner UV irradiation

100

Box – Counting Method

Box-counting Fractal Dimension

Analyzing the black and white images obtained by considering different grey-level thresholds, the box-counting fractal dimensions indicate higher fractal dimensions for $PdAg/TiO_2$ and $PdCu/TiO_2$.

NP size (CO chemisorption, TEM)

Sample	D _{TEM} (nm) (Unsupported)	D _{CO chem} (nm) (TiO ₂ Supported)		
Pd Np	2.47~10.00	1.40		
Ag Np	1.48~30.00	-		
PdAg Np	1.48~25.00	2.09		
PdCu Np	4.00~5.00	3.60		

0 20 40 60 80 100 0 20 40 60 80 Composition (at. % Cu) 0 20 40 60 80 Composition (at. % Ag)

70 mL H₂O; 0.035g cat.1 wt% Pd-Cu,Ag/TiO₂; Pd:Cu,Ag=1:0.25 molar ratio; D(Ar)=30 cm³/min

CONCLUSION

***** The PdCu Nps supported on TiO₂ (1% metal loading) showed excellent activity for the catalytic reduction of NO_3^- ions in the liquid phase (~95% nitrate conversion); a lower NO_3^- conversion (~30%) was obtained under UV photocatalytic test.

Simetallic PdCu Nps dispersed on TiO₂ with various molar ratios showed better activity for photocatalytic water splitting compared to PdAg/TiO₂ samples.

The formation of Pd hydride in the bulk metal results in the dissociation rate of H₂ on the Pd surface that exhibits high activity and selectivity for numerous catalytic processes, such as the catalytic reduction of nitrate and nitrite ions in water.

♣All samples exhibit fractal behavior; the equivalent surface of PdAg /TiO₂ and PdCu/TiO₂ exhibit the highest fractal dimensions (2.823 and 2.846, respectively).

REFERENCES

1. Papa, F., Miyazaki, A., Scurtu, M., Ianculescu, A. C., & Balint, I.J. Nanoparticle Res. 16 (2014): 1-12.

Vasile, A., Scurtu, M., Munteanu, C., Teodorescu, M., Anastasescu, M., & Balint, I. Process Saf. Environ. Prot. 108 (2017): 144-152.
 Vasile, A., Papa, F., Bratan, V., Munteanu, C., Teodorescu, M., Atkinson, I., ... & Balint, I. J. Environ. Chem. Eng. 10.2 (2022): 107129.
 Vasile, A., Dobrescu, G., Bratan, V., Teodorescu, M., Munteanu, C., Atkinson, I., ... & Balint, I. Catalysts 14.9 (2024): 619.

ECCS2025.sciforum.net