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INTRODUCTION & AlIM : o o : :
Solar energy is a clean, infinite solution in light of growing energy demands and climate challenges. @
Porphyrins are highly conjugated, macrocyclic compounds composed of four pyrrole rings linked by methine bridges, forming a planar, R
aromatic 18 t-electron system. Because of their adaptability, affordability, and tunability, remarkable light-harvesting capabilities, thermal Be”ZOfU'"a” Benzoxazole (BFZ)
stability, dye-sensitized solar cells (DSSCs) have become an available substitute for traditional silicon-based photovoltaics. They are A N
perfect for photovoltaic and catalytic applications because of their distinct donor —acceptor behavior. By adding electron-donating or R R N
Withdrawing groups such as BF, BFz, ID, 1Dz, BT, BTz to Porphyrin (P) structures, HOMO-LUMO gaps can be adjusted, charge H
separation can be improved, and reactivity can be increased. In addition to solar cells, porphyrin-based catalysts exhibit great promise in Indole (ID) Benz'm'dam'e (Ibz)
environmental remediation, CO: /N: reduction, and water splitting. This work offers thermochemical, spectral, and optical insights into R @ @E
modified porphyrins to identify structure—property relationships that optimize catalytic efficiency and DSSC performance. Our research Porphyrin (P)
opens the door for next-generation multifunctional materials in applications related to green chemistry and renewable energy. Benzothiophene (BT) Benzothiazole (BTz)
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Fig (a) FT-IR, and (b) Raman (c) Uv spectra of the studied compounds. §

3.3. (i) Density of state and (ii) TDM graphs of (a) P, (b) PBF, (c) PBFz, (d) PID,

(e) PIDz, (f) PBT, and (g) PBTxz. .
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] @ .. 2 25 5 initial singlet excitation energy (Eopt), and
7y ) S —d e exciton binding energy (E; )
] P PD PIDz PBF PBFz PBT PBTz Compounds|  Eopt Egap Eb
0 """~ W Polarizability, a (*10-22 cm3 esu-1) P 3.448 1.927 1.521
& '12nergy (ev)o &  Hyper-polarizability, b (*10-31 cm5 esu-1) PID 3.061 1.691 137
| PIDz 3.061 2.67 0.391
CONCLUSION This study highlights PBF and PID as the best doner, PBF 3.061 1.719 1.342
which help to build effective donor-acceptor systems for next-generation solar cells. PBFz 3.061 2.703 0.358
And PBFz and PIDz as top-performing porphyrin derivatives for enhanced DSSC PBT 3.061 2.703 0.358
efficiency and catalytic activity. Thermochemical analysis reveals their high stability PBTz 3.061 2.689 0.372
and strong polarity; FMO and DOS results confirm effective charge transfer and PBE s in h larizability (6.856
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