PBF has the highest hyperpolarizability (6.856 ×10⁻¹) for NLO applications, PBFz shows the highest dipole moment (0.026 D) for L

The 3rd International Electronic Conference on Catalysis Sciences

23-25 April 2025 | Online

Structural modification of porphyrin to accelerate the electron donor nature; A physicochemical and spectral study

Nurjahan Akter ^{1*}, Monir Uzzaman ^{2*}, Faisal I. Chowdhury ³ and Mohammed Sakib Musa ⁴

¹Theoretical and Computational Chemistry, University of Dhaka, Dhaka-1000, Bangladesh

² Department of Applied Chemistry, Mie University, Tsu, Mie 514-8507, Japan, ³ Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, ⁴Department of Applied Chemistry and Chemical Engineering, University of Chittagong, 4331, Bangladesh

INTRODUCTION & AIM

Solar energy is a clean, infinite solution in light of growing energy demands and climate challenges. Porphyrins are highly conjugated, macrocyclic compounds composed of four pyrrole rings linked by methine bridges, forming a planar, aromatic 18 π -electron system. Because of their adaptability, affordability, and tunability, remarkable light-harvesting capabilities, thermal stability, dye-sensitized solar cells (DSSCs) have become an available substitute for traditional silicon-based photovoltaics. They are perfect for photovoltaic and catalytic applications because of their distinct donor –acceptor behavior. By adding electron-donating or Withdrawing groups such as BF, BFz, ID, IDz, BT, BTz to Porphyrin (P) structures, HOMO-LUMO gaps can be adjusted, charge separation can be improved, and reactivity can be increased. In addition to solar cells, porphyrin-based catalysts exhibit great promise in environmental remediation, CO₂ /N₂ reduction, and water splitting. This work offers thermochemical, spectral, and optical insights into modified porphyrins to identify structure-property relationships that optimize catalytic efficiency and DSSC performance. Our research opens the door for next-generation multifunctional materials in applications related to green chemistry and renewable energy.

catalytic systems.

Compounds	E _{opt}	E_{gap}	Eb
Р	3.448	1.927	1.521
PID	3.061	1.691	1.37
PIDz	3.061	2.67	0.391
PBF	3.061	1.719	1.342
PBFz	3.061	2.703	0.358
PBT	3.061	2.703	0.358
PBTz	3.061	2.689	0.372

esu⁻ ¹) for electronics.

ECCS2025.sciforum.net