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Abstract: While artificial intelligence has shown promising results for quality inspection, it often 

requires large training datasets, which are impractical for industrial applications. Defective parts 

are heavily underrepresented in normal production which makes it a poorly posed problem for 

supervised learning approaches. In this work, this issue is tackled by combining an automated in-

spection procedure with an anomaly detection approach for defect detection. A 7-DoF robotic ma-

nipulator was used to automate the part handling in front of an industrial optical camera sensor. 

The captured images were used to train a PaDiM anomaly detection network to reconstruct a normal 

image of the part. The results show that various defects can be detected with defect detection rates 

up to 100% while maintaining approximately 91% specificity using a small dataset of 117 parts. 
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1. Introduction 

In-line quality inspection in manufacturing industry is of high relevance to reduce 

financial losses by minimizing waste and preventing returns [1]. In the current time, pro-

duction processes are becoming increasingly more efficient demanding automated sys-

tems that can keep up with the increased production speed without losing reliability [1]. 

Although deep learning (DL) approaches are already applied in a broad spectrum of 

fields, they are still rare in industrial settings. This is usually due to the highly time inten-

sive process of acquiring training data, which is not readily feasible in time-efficient pro-

duction environments, which has already been addressed by previous works [2,3]. This 

paper aims to explore possibilities to seamlessly integrate training data acquisition into 

normal production. As the targeted use-case the field of plastic injection molding was 

elected, where 100% inspection of the produced parts is commonly required to ensure 

high production standards. Plastic injection molded parts often have complex surface 

structures which makes the inspection of such parts time-consuming, difficult to automate 

and unreliable for humans. Due to the wide variety of materials, geometries, surface prop-

erties and degrees of complexity in the field of injection molded components, each prod-

uct has specific characteristics that are used to evaluate product quality manually or au-

tomatically. Examples include geometric variations, flow marks, scratches, weight varia-

tions, differences in gloss level, cracks, etc. Many systems can identify single or a few 

defect features. But no system exists which can evaluate several defect-features at the 

same time without a substantial training database. Especially in the field of plastic 
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injection molding flexible inspection system designs would be desirable due to the inher-

ently dynamic nature of plastic injection molding. The mold cavity as well as the plastic 

or rubber material are readily exchangeable and new mold cavities for new parts are being 

developed regularly. Thus, smart systems that are easily adaptable to changing circum-

stances would greatly benefit the production quality and efficiency in this field. 

To achieve this, the experimental setup of this work consists of a robotic manipulator 

used to execute the handling of the parts—namely picking, placing, and presenting it to 

an industrial camera in multiple orientations. On the backend, a DL approach is applied 

that processes the acquired images and assesses the quality of the inspected part. This 

work aims to be a prove the concept of a robotically aided automatic inspection procedure 

in this production field that is easily adaptable to other use-cases. 

More concretely, this paper aims to contribute practical potentials, limits, challenges, 

and experiences that arise when implementing robotic automation and DL anomaly de-

tection into industrial manufacturing processes. 

Related Work 

The field of defect detection on images is very broad. The development of artificial 

intelligence networks in recent years has enabled real time detection and/or classification 

of defects on optical images with very high precision. Currently, machine vision or DL 

approaches are broadly investigated in many fields, especially in the production sector 

[4–6]. The majority of approaches in this field employ supervised learning which requires 

vast amounts of data to train. 

Transfer learning, the application of previously learned skills to new circumstances 

can be used to mitigate this problem. While initially, transfer learning was only applied 

to knowledge transfer between similar domains, now first results indicate that it is also 

possible to transfer knowledge between dissimilar domains, achieving up to 99.95% clas-

sification accuracy [7]. Transfer learning has also already been evaluated in an industrial 

environment for defect detection of thermal conductive components, where it could be 

shown that a CNN pretrained on ImageNet can reach an accuracy of 93% after training 

on a 6000 image dataset with four types of defects [3]. It should be noted that [3] and [7] 

used grayscale images and considered only parts/subjects without complex geometries. 

An alternative approach to the reduction of training data is data augmentation. This has 

already been applied to practical use-cases in the field of semi-conductor manufacturing, 

where as little as 30 images per class could be used to achieve a accuracy of approximately 

95% [2]. However [2] also state that generating a consistent amount of defect data for each 

class was difficult in practice. 

Alternatively, semi-supervised, or unsupervised approaches are also described in the 

literature. In these cases it is assumed that either only defect-free samples are learned, or 

that the majority of training samples is defect-free [6]. In recent developments the Patch 

Distribution Modelling (PaDiM) anomaly detection approach [8], reached at least 94.1% 

Area Under The Curve—Receiver Operating Characteristics (AUC-ROC) metric for all 

classes in an anomaly detection benchmark dataset (MVTech AD) [9]. The main advantage 

for the anomaly detection approach is that defective parts are usually heavily underrepre-

sented in production. Furthermore, it is not always trivial to synthesize defects, so that the 

acquisition of appropriate training data is challenging in an ongoing production environ-

ment. A drawback of anomaly-based methods is that no direct classification of the defect 

is possible. 

When it comes to automating the required data acquisition for optical surface defect 

detection different systems are applied. Stationary cameras observing conveying systems, 

CNC machines, dedicated inline computer vision systems or articulated robots with a 

camera as end-effector [1]. Especially in serial production of complex parts, it is not trivial 

to design a process, that achieves reliable and precise inspection of the entire part surface. 

Complex parts are usually difficult to pick for robots and require multiple viewpoints for 

an optical inspection procedure to sample the entire surface. To avoid the problem of 
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picking and placing parts, articulated robots are often used to manipulate optical sensors 

around objects for inspection. In [10], an articulated robot was used to track parts on a 

running conveyor belt using a stereovision 3D scanner, paving the way for in-motion 

quality inspection. Another example for this robot-camera setting is given in [11], where 

a mobile articulated robot with a dual camera setup and a 3D scanner is used to inspect 

aircraft engine assemblies. Furthermore, in [12], a robot was used to pick metal washers 

and manipulate them in front of a high resolution inspection camera system to perform 

geometric measurements. An advantage of the part-in-hand setting instead of the sensor-

in-hand setting is that perspectives of complex shapes are easier to reach while avoiding 

occlusions. 

2. Materials and Methods 

Our experimental setup consists of a robotic manipulator as the part handling system 

Franka Emika Panda (Franka Emika GmbH, Munich, Germany), a Basler GigE Vision 

(Basler AG, Ahrensburg, Germany) industrial camera system with an attached ring light 

source and a PCE Instruments PCE-AB100C precision scale (PCE Deutschland GmbH, 

Meschede, Germany). 

The part on which the system is applied is a transparent thermoplastic (polycar-

bonate) ring, with complex small surface structures (see Figure 1). A general overview of 

the proposed experimental setup is given in Figure 2. 

 

Figure 1. Injection molding part model used in the proposed system architecture. 

 

Figure 2. Overview of the used system setup consisting of the part handling robot, an industrial 

camera and a precision scale. 

The prototype realizes a generalizable system architecture, applicable in an industrial 

production setting that is differentiable into the robotic unit, the anomaly detection ap-

proach and the communication and data management of the entire process. 

2.1. Image Acquisition Procedure 

The complete inspection process consists of the initial production of the part, which 

is then picked up by the robot at a consistent, predefined grasp position on the part. The 
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robot moves the part to the industrial camera and captures 20 MP uncompressed images 

of eight different, heuristically defined perspectives. Subsequently, the part is placed on 

the precision scale and picked up again at a second predefined grasp point after the weight 

measurement is completed. This necessary due to the occlusions caused by the gripper in 

the first set of images. The same eight perspectives are acquired again using the second 

grasp point, yielding a total of 16 inspection images per part. The complete process dia-

gram is given in Figure 3. 

 

Figure 3. Diagram of the inspection process (GP: grasp point). 

Control of the robot is realized using a robot operating system (ROS) environment 

[13] in which the real world planning scene setting and the corresponding motion of the 

robot was planned using MoveIt [14]. 

2.2. Dataset and Image Preprocessing 

The dataset used for this study comprises 118 defect-free parts (no noticeable differ-

ences or defects to a sample part) and 32 parts with different kinds and degrees of artifi-

cially generated defects (scratches, cracks, dots, missing geometries, deformation). Some 

of the generated defects are given in Figure 4. 

 

Figure 4. Examples of some of the artificially generated defects on the part surface marked in red. 

From left to right: scratches, dots, crack, missing structure 1, missing structure 2. 

The acquired images need a few processing steps before being used for training of 

the elected anomaly detection method. To avoid processing too many unnecessary pixels, 

the full image is initially cropped to the outline of the part. Therefore, Multi-Otsu [15] was 

used to determine a threshold for the background and the image was cropped accord-

ingly. Additionally, heavy reflection artifacts from the metal fingers of the robot gripper 
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introduced challenges to the anomaly detection algorithm. As the gripper was in a very 

consistent image area and is not required for the actual quality analysis, this part of the 

image was cropped by removing the bottom 300 rows of pixels from the image. The 

cropped images were resized with constant padding to the shorter side to achieve a square 

image ratio. Finally, each image was normalized according to the ResNet18 documenta-

tion [16]. 

2.3. Anomaly Detection Network and Training 

For the anomaly detection, an implementation of PaDiM [8] with a ResNet18 back-

bone [17] was trained on a GeForce RTX 3090 GPU to convert input 20 MP RGB images 

into lower resolution anomaly heatmaps. To reduce the potential for outliers, each anom-

aly heatmap was filtered using an isotropic gaussian smoothing operation with 𝝈 = 𝟒. An 

individual model was trained for each of the sixteen perspectives of the part. To estimate 

the required training dataset size and output precision, the network was trained using 

different parameters. Lower resolution heatmaps require less computation time and thus 

grant faster inference times while less training data yields shorter training times and prep-

aration/data acquisition periods. This was done by varying the training/validation split 

ratios (0.4, 0.6, 0.8) of the defect-free images as well as three network output resolutions 

(256 × 256, 512 × 512, 1024 × 1024) for the three split ratios, resulting in nine test cases. 

2.4. Anomaly Decision Process 

The PaDiM network generates heatmaps in the specified size in which each pixel cor-

responds to an anomaly score. The decision of whether a part is anomalous based on the 

anomaly heatmaps can be approached in different ways. To avoid manual labelling, 

which is time-intensive and defeats the purpose of this work, threshold-based decision 

methods are applied to determine an “anomaly score” 𝑨. In each case, an anomaly score 

defined and compared to the threshold T. If the threshold is crossed in at least two of the 

16 images for each part, the part is labelled anomalous. This was done to increase the 

robustness of the detection against noise or outliers. 

2.4.1. Maximal Image Value 

This metric extracts the maximal image value from each anomaly heatmap M. 

𝐴𝑚𝑎𝑥 = 𝑚𝑎𝑥⁡(𝑀) (1) 

2.4.2. Percentile-Based 

A more robust approach may be the usage of percentiles instead of the maximal im-

age value. This may account for outliers in defect-free anomaly maps. For this approach, 

the anomaly score is equal to the image value at p-th Percentile P. 

𝐴𝑝 = 𝑃𝑝(𝑀)⁡ (2) 

2.4.3. Cluster-Based Anomaly Decision 

A slightly more advanced approach is to binarize the anomaly heatmap according to 

T and then evaluate the resulting pixel clusters by size. Here, the binary decision whether 

an image is anomalous or not is based on the presence of at least one cluster of pixels 

above T of at least size S. Furthermore, it is possible to mark the detected defect location 

on the image to evaluate the anomaly in edge cases with low anomaly scores. 

The values for T and S in this work were determined by analyzing the dataset. For T, 

the distributions of maximal image values for all images in all datasets and network con-

figurations (see Section 2.3) were plotted and the mean distance between the training data 

distribution and anomaly data distribution was calculated. An example for this evaluation 

is given in Figure 5. The value of S was determined by estimating the dimensions of the 
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minimal expected defect size and converting it to the corresponding pixel area. A minimal 

defect size of 0.5 mm was defined according to the smallest defect in the defective dataset. 

A circular pixel area was assumed for determining the expected pixel cluster size in an 

anomalous image. To optimally reflect the expected minimal anomaly cluster size, the 

smoothing kernel size was considered by adding the kernel size to the pixel defect size 

before calculating the pixel area. This results in the following values for S in the different 

resolutions: 1024: 131, 512: 86, 256: 67. 

 

Figure 5. Example distributions of maximal image values to determine a threshold value for the 

subsequent analyses. The network configuration with 94 training parts and 23 validation parts was 

chosen for this purpose with the 1024 × 1024 heatmap resolution. The mean distance between the 

distributions of the training dataset (orange) and the anomaly dataset (green) is shown at the dashed 

red line. The distribution of the validation set is given in blue. 

The sensitivity, or true positive rate (TPR), as well as the specificity, or true negative 

rate (TNR) were used to evaluate the results. In this case, a positive classification corre-

sponds to an anomalous part, whereas a negative classification corresponds to a defect-

free part. In industrial manufacturing it is necessary to keep the sensitivity high to main-

tain high quality standards while also keeping the specificity high to avoid unnecessary 

disposal of too many parts that are defect-free. This is a common trade-off in classification 

problems which needs to be balanced for the individual use-case. In this work, emphasis 

is placed on the TPR to ensure that all anomalous parts are detected. Thus, the metric, 𝑫𝑻, 

for evaluating the threshold in this case is the true negative rate (TNR) at the highest 

threshold, 𝑻𝒎𝒂𝒙, that still yields a TPR of 1. This way, the best tradeoff where all anomalies 

are still detected with the least amount of false positive classifications can be determined. 

𝑫𝑻 = 𝑻𝑵𝑹𝑻𝒎𝒂𝒙   (3) 

3. Results 

The main results for the proposed anomaly decision methods and the different net-

work parameters are given in Figure 6. In Figure 6, the results for sensitivity and specific-

ity are shown against the respective anomaly score thresholds for the three evaluation 

metrics. The range of thresholds was chosen according to the results from Figure 5, which 

indicated that a threshold value around 10 may be a sensible choice to separate the anom-

alous images from the defect free images. Thus, thresholds from 0 to 15 were evaluated in 

steps of 1. Additionally, the effects of the split of training data and validation data, as well 

as the trained anomaly heatmap pixel ratio on the evaluation metrics are given. Addition-

ally, the results for DT for each network and decision approach is given in Table 1. 

Table 1. Evaluation of the lowest False Positive Rate (FPR) at the highest threshold that still yields a 

true positive rate (TPR) of 1 for each network constellation. DT is equal to the FPR at that threshold 
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and serves as the evaluation metric for the network performance. The minimal values for DT for each 

evaluation method are marked in bold letters. 

Parameter Maximal Value Pecentile 99.99 Cluster-Based 

Metrics T TNR T TNR T TNR 

47/70/256 6 0.49 6 0.51 6 0.67 

71/46/256 7 0.79 6 0.68 6 0.75 

94/23/256 6 0.73 6 0.76 5 0.58 

47/70/512 9 0.61 8 0.57 7 0.55 

71/46/512 8 0.69 8 0.73 8 0.79 

94/23/512 9 0.88 8 0.88 7 0.81 

47/70/1024 13 0.62 11 0.72 11 0.66 

71/46/1024 12 0.71 10 0.78 10 0.75 

94/23/1024 11 0.83 10 0.91 9 0.85 

 

Figure 6. Plots of the sensitivity (true positive rate—TPR) in full lines and the specificity (true nega-

tive rate—TNR) in dashed lines against the tested thresholds for the respective anomaly scores. The 

results are displayed in terms of the three anomaly decision methods (maximal value-, percentile 

(99.99)- and cluster-based, as well as each anomaly heatmap image ratio (columns) and into the 

different splits of training and validation values (47/70: blue/yellow, 71/46: green/red, 94/23: pur-

ple/brown). 

3.1. Anomaly Heatmap Size 

For all evaluated metrics, the effect of the anomaly heatmap size on the detection 

performance is similar. The drop-off of the TPR starts at lower thresholds of values around 

6–7 for the 2562 heatmaps, whereas the 5122 TPR begins dropping at around 7–9 and the 

10242 maps at 10–11. The opposite is the case for the TNR. Here, the lower resolution 

anomaly maps reach plateaus earlier and achieve higher rates in general. The TNR is close 

to one at a threshold value range of 10–12 whereas the TNRs for the 5122 and 10242 maps 
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are still ascending to one at the maximal evaluated threshold of 15. In combination, this 

means that the best compromise between false positive detections and false negative is 

reached at lower thresholds for lower resolution heatmaps and at higher thresholds for 

the higher resolution heatmaps. In terms of DT, higher resolutions on average result in 

lower DT-scores, except for the max-value based decision approach, where the average of 

DT-scores is higher for the 10242 resolution heatmap than for the 5122 resolution heatmap. 

3.2. Training/Validation Split 

The split of training and validation data also influences the performance metrics. In 

general, the TNR for the lower split ratios is lower than in the higher split ratios, whereas 

there is no visible difference in the TPR for the different split ratios. The DT-scores for the 

different split ratios are mostly decreasing on average with greater split ratios, although 

no average difference could be found between the DT-scores of the 71/46 split and 94/23 

split in the cluster-based decision method. 

3.3. Anomaly Decision Approach 

The different anomaly decision approaches influence the decision performance as 

well. The TPR curves drops off with a steeper slope in the percentile-based and cluster-

based approaches compared to the max-value based method. The TNR curves are similar 

to each other in all evaluated cases except for the max-value based TNR curves in case of 

the 10242 resolution. Here, the curves show a larger plateau at thresholds of 6–7 and sub-

sequently slightly lower maximal values for TNR with respect to the other two. Overall, 

the percentile-based approach yielded the best results in terms of the DT-score. In the 10242 

network with a 94/23 split of training and validation data the DT-score was 0.91, meaning 

that in this case, 100% of anomalous parts were correctly classified as anomalous while 

91% of defect-free parts were classified as defect free. The next best DT-scores of 0.88 were 

found in the 94/23/512 settings for the max-value based and percentile-based methods. 

The highest DT-score for the cluster-based approach is 0.85 in the 94/23/1024. 

4. Discussion 

The results indicate that high classification accuracy for anomalous parts can be 

achieved using anomaly detection methods and simple approaches for decision-making. 

By tuning the anomaly threshold for the individual use-cases a 100% detection rate of 

anomalous parts could be achieved. However, 9% of defect-free parts were misclassified 

in the best performing scenario which corresponds to 11 of 117 evaluated parts. Analyzing 

the falsely classified parts a few reasons for misclassification could be identified. Examples 

for these anomalies in the training dataset are given in Figure 7. Some of these anomalies 

are of technical nature, e.g., in row one an example of a failure of the contour detection for 

the cutout of the part failed. This may happen due to unexpected structures or changes in 

the image background and could be fixed by using an image registration approach for the 

cutout instead of a contour detection approach. In the second row, the gripper is in the 

cutout frame due to a slight offset of the grasp position on the part. This is likely due to 

an uncertainty in the experimental setup which can be avoided in industrial implementa-

tions of the prototype, by using more accurate hardware in the supply system and the 

robotic manipulator. Other parts contained residual plastic strings that were barely visible 

to the naked eye, or very small dust or dirt particles (see Figure 7, columns 3 and 4). The 

conclusions from this are twofold: Firstly, it could be shown that these kinds of defects 

can be detected even though they were present in the training dataset. However secondly, 

it may be difficult to decide whether every anomaly should directly grant rejection of the 

part as superficial dust may not be reason enough to dispose the part. In conclusion, this 

means that the DT-scores presented in Table 1 may be slightly lower when assuming a 

more optimal inspection environment and setup. However, the risk of anomaly detection 
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methods for excessive misclassification of factually defect-free parts needs to be consid-

ered in the individual application. 

The image resolution as well as the training dataset size has a measurable impact on 

the classification performance. According to the results of this work, adequate classifica-

tion accuracy cannot be reached with training dataset sizes below 47 parts for the pre-

sented use-case. In this work, the highest measured DT-score for the 47/70 split was 0.72, 

so that almost 30% of all defect-free parts were falsely be classified as anomalous. Further-

more, an anomaly heatmap size of 2562 will also not result in adequate classification accu-

racy as the highest DT-score reached in the 2562 networks did not exceed 0.79. 

 

Figure 7. Analysis of falsely classified parts from the training and validation datasets. The original 

image and the corresponding anomaly heatmap (1024 × 1024) are shown and the type of anomaly is 

labelled on each row. 

Three simple decision approaches were evaluated and compared to the other param-

eters, the influence of the decision method on the classification seems to play a minor role. 

Interestingly, the still simple, but most advanced decision method “cluster-based” 

achieved worse classification accuracy in terms of DT at only 0.85 compared to the percen-

tile-based approach. The reasons are difficult to determine without having a 100% accu-

rate dataset, as DT may be heavily influenced by anomalous parts in the training/valida-

tion datasets. 

Speed of both the hardware and software system were not prioritized in this work. 

An inspection cycle with the current hardware system takes approximately 1 min for one 

part, where the inference takes roughly 5 s per image on a midrange consumer CPU at the 

highest image resolution of 10242. Future work should consider optimizing hard- and soft-

ware performance and reevaluate the network performance on further datasets, as well as 

other parts. 

In this work, important findings regarding the application of anomaly detection for 

automated quality inspection of complex parts could be found. The approaches were fo-

cused on ease of implementation and application in practical manufacturing. Anomaly 

detection approaches are suitable here due to the advantage that only defect free data is 

required for training. The results indicate high potential for the application in real world 

industrial manufacturing but need to be tuned to the individual production requirements 

to avoid unnecessarily high false positive classifications. 
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