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Abstract: In material classification tasks, custom sensors have traditionally been employed to 

achieve accuracy scores. While numerous studies have reported high accuracy rates, there has been 

limited discussion on real-time predictions or real-world applications in most research papers. Real-

time prediction of object material properties is crucial for enhancing the tactile sensing capabilities 

of robotics in industrial settings. This study proposes the use of Commercial Off-The-Shelf (COTS) 

tactile sensors for hardness classification, utilizing small datasets for model training and real-time 

prediction. Testing involves evaluating the ability of robotic grippers to accurately predict the hard-

ness of new, unknown objects, categorizing them into two classes (soft, hard) or three classes (hard, 

soft, flexible). Results obtained from a multiple-algorithm approach reveal an 80% accuracy rate for 

binary classification, with real-time tests demonstrating 2 out of 3 correct predictions for most sen-

sors. For ternary classification, the accuracy rate is around 70%, with 2 out of 3 correct predictions 

from at least one sensor. These findings highlight the capability of COTS sensors to perform real-

time hardness classification effectively. This also highlights that COTS sensors have capabilities and 

flexibility based on their dimensional architecture that they can be used in many different robotics 

applications without investing time in the development of a specific use-case sensor for classification 

task within robotic tactile sensing. 
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1. Introduction 

Determining the properties of objects or materials has always been crucial in manu-

facturing environments for handling purposes. Different types of classification have been 

performed across the literature using various customized, complex architecture-based 

sensors [1–3]. These tactile sensors, however, cost high in production and take more time 

in case of ready to deploy in robotics environment [3,5]. Additionally, customized sensors 

often face integration issues with robotic grippers. While different types of classification 

have demonstrated promising results in terms of accuracy, real-time prediction still 

misses the context of application use of sensors [2,4,8]. However, one significant classifi-

cation that has not been extensively explored is hardness classification. Hardness classifi-

cation is essential in the industrial robotic environment. This helps to train robotic grip-

pers to understand the hardness of objects, thereby enhancing the tactile sensing capabil-

ities of robotic grippers. Different machine learning algorithms have been used across lit-

erature to analyze collected data and use accuracy metrics to evaluate performance but 

don’t explore real time testing or prediction capability outcome of classification [2,4]. 
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Previously literature has explored COTS and other tactile sensors inspired from hu-

man mechanoreceptors functionality [4,6,7]. These studies, however, have primarily fo-

cused on classification accuracy from multiple algorithms. To extend the existing out-

comes and studies to real-time application scenarios, it is crucial to understand COTS sen-

sors capability in real-time predictions using existing trained models. Also, customized 

sensors can face difficulty while integrating with different robotic grippers where COTS 

sensors may have more flexibility and agility to embed with robotic grippers. The litera-

ture has utilized different sensors to investigate classification by collecting data from var-

ious objects based on the shore hardness scale [4,6]. This paper focuses on investigation of 

COTS tactile sensors individually for classification and performing near-real-time hard-

ness prediction. Additionally, it presents how expanding the number of object classes im-

pacts the prediction of unknown objects and the retesting of new object data for real-time 

hardness estimation. This will demonstrate the capability of COTS tactile sensors as a po-

tential solution in real time robotic environments. 

2. Method 

2.1. COTS Sensor 

Based on a literature review, COTS tactile sensors were selected to conduct real-time 

prediction tests [4]. Three sensors were identified: First one force sensitive resistor (FSR) 

as (F), second potentiometer sensors Softpot membrane as (P), and third vibration thin 

film sensor as (V). Each of the sensors were readily available and they were easy to install 

on Schunk robotics gripper with the help of tape. Each sensors value was collected 

through Arduino via raspberry-pi using serial commutation library which was adapted 

from research paper [4,7]. Each sensor detects different types of tactile information—pres-

sure, vibration, and force—as analog values during the grasping process. These tactile in-

puts are crucial for accurately determining the hardness and other properties of the objects 

being handled, as demonstrated in the study from [4]. The integration of these sensors 

allows comprehensive data collection, which can be essential for improving the precision 

and reliability of COTS in real-time predictions for robotic applications. 

2.2. Object Selection Based on Shore Scale 

Previous literature has highlighted various techniques utilizing the shore hardness 

scale, categorizing it into qualitative and quantitative methods [4]. The qualitative scale 

was used to select and prepare objects for 3D printing techniques and highlighted as Soft-

S, hard-H, F-flexible. Illustrated in Figure 1, the qualitative scale served as a reference for 

understanding the objects chosen for data collection during the experiment and for retest-

ing the model with unknown objects. For training and testing the machine learning (ML) 

methods, four primary objects were selected: Silicone rubber (S), PLA-Polylactic Acid (H), 

TPU (Thermoplastic polyurethane)- (F), and Wood (H), each approximately 3 cm × 3 cm 

× 3 cm in size. For real-time prediction, Metal (H), thread ball (F or S), and white sponge 

(S) were chosen. Each object was categorized as either soft, flexible, or hard. In the binary 

classification- retesting case, squeezable objects were considered soft (S), while flexible 

objects were also considered soft. 
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Figure 1. illustrates the shore scale-based object selection method used for hardness classification. 

In this approach, objects are classified into two categories: Hard (H) and Soft (S), or into three cate-

gories: Hard (H), Soft (S), and Flexible (F). New objects are treated as unknown values and are eval-

uated using a trained prediction model. This model processes data obtained from COTS sensors and 

value obainted while grasping fopr 10 s sequentially to predict whether the object is H, S, or F [4]. 
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2.3. Approach 

The approach illustrated in Figure 1 can be described as follows: To perform hardness 

prediction, COTS sensors were selected to collect tactile information from objects using 

grasping or force resistance methods, or by squeezing the objects with a two-sided robotic 

gripper. Objects, chosen based on the shore hardness scale, were subjected to a force im-

pact of 0.4 MPa and placed between the robotic gripper to collect data from each sensor 

(F—force, P—potentiometer, V—vibration). This resulted in two sets of data for binary 

classification (Hard and Soft) and ternary classification (Hard, Soft, Flexible) for each ob-

ject. The data obtained from the sensors were connected to an Arduino and stored on a 

Raspberry Pi. Gripper actions were controlled via Python, which also managed the pres-

sure valve for grasping and releasing. For the classification task, multiple machine learn-

ing algorithms such as Support Vector Classifier (SVC), Random Forest, Decision Tree, 

and others were implemented as described in the literature [1,2,4,5]. To test the trained 

algorithms, 20% of the original data was used as test data to predict accuracy, as show-

cased in the results. For real-time testing, an unknown object was chosen to test each sen-

sor and MLs predictability. While grasping new data was generated and fed at same time 

without storing. The sensor data was fed directly into the trained model to predict out-

comes as H (Hard), S (Soft) for binary classification, and H, S, F (Flexible) for ternary clas-

sification. After each algorithm predicted the outcome, the maximum number of predic-

tions of any class determined the overall outcome. This overall algorithm prediction was 

represented in the results, indicating the most repeated outcomes as H, S or H, S, F. 

3. Results and Discussion 

To validate the machine learning algorithm, two methods were used. First, unseen 

object data comprising 20% of the original dataset was used to test the model. This ap-

proach confirms the model’s accuracy and evaluates its performance with data that was 

not used during the training phase. Second, real-time data was integrated into the predic-

tive model of each ML algorithm, which had been trained with previously collected data. 

This method allowed for the assessment of the model’s performance in real-time scenar-

ios, demonstrating its capability to handle predictions and adapt dynamically to new tac-

tile information. 

3.1. Accuracy 

The accuracy results illustrated in Figure 2 the performance of various machine learn-

ing algorithms in terms of accuracy, highlighting the capability of COTS sensors in per-

forming hardness classification compared to the literature that uses customized sensors. 

The accuracy for binary classification reached approximately 82%, indicating that among 

the three COTS sensors, P (potentiometer) and F (force) showed reliable outcomes. For 

the three-class classification, only the P-sensor was able to achieve around 69% accuracy, 

whereas the F and V (vibration) sensors did not reach this level. 
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Figure 2. illustrates the accuracy results obtained from each algorithm for the sensors considered: 

F—force sensors, P—potentiometer sensors, and V—vibration sensors, across multiple algorithms. 

The left plot shows the accuracy based on two classes (hard and soft), while the right plot presents 

the accuracy based on three classes (hard, soft, and flexible). 

3.2. Real Time Prediction 

In real-time prediction, unknown object values were directly obtained from each sen-

sor within the robotic gripper over durations ranging from 1 to 10 s as illustrated in Figure 

3, based on the shore hardness scale. Each second denotes the number of datasets consid-

ered: 1 s corresponds to 1 data point, while 10 s provide 10 data points if the object is 

continuously grasped. Median value was obtained which goes into prediction method of 

each model to predict the classifier. Most number of the predicted outcomes from each 

algorithm was used to determine the final result. For binary classification, the outcomes 

were H (Hard) and S (Soft), as shown in Table 1. For ternary classification, the outcomes 

were H (Hard), F (Flexible), and S (Soft), as shown in Table 2. 

 

Figure 3. Showcases the prediction approach employed, highlighting the outcomes from several 

algorithms. The process begins with the grasping of the object for approximately 10 s to collect data, 

followed by calculating the median value. This median value is then input into the prediction meth-

ods of each algorithm, with the most predicted outcome being displayed. 
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Table 1. Table showcases the outcome prediction which uses binary classification (H, S) based 

trained model and predicts outcome based on two classes H-hard and S-soft; red indicates wrong 

prediction. 

New Unknown Object 
FSR 

(Prediction) 

Potentiometer 

(Prediction) 

Vibration 

(Prediction) 

H(Metal) H S H 

S (TPU) S S S 

S (Sponge) S S S 

Table 2. Table showcases the outcome prediction which uses ternary classification (H, S, F) based 

trained model and predicts outcome based on three classes H-hard and S-soft, F-Flexible; red indi-

cates wrong prediction. 

New Unknown Object 
FSR 

(Prediction) 

Potentiometer 

(Prediction) 

Vibration 

(Prediction) 

H(Metal) F H F 

F (TPU) F F F 

S (Sponge) H S F 

4. Conclusions 

The results from real-time prediction demonstrate that binary classification can accu-

rately predict the properties of unknown object materials to a certain extent. However, as 

shown in Table 2, increasing the number of classes to include a flexible category leads to 

a rise in prediction errors and a drop in accuracy. The study also indicates that COTS 

sensors are capable of handling real-time prediction in binary classification scenarios, but 

their performance declines when the number of classes expands. In binary classification, 

both FSR and vibration sensors accurately predicted material properties, whereas in ter-

nary classification, only potentiometer sensors showed accurate predictions. The near 

real-time prediction capability of these sensors indicates that COTS sensors have potential 

for use in real-world applications. For future research, these sensors and the proposed 

approach could be further tested with multiple iterations with best-performing sensors 

and with topology, thereby enhancing their suitability for wide-scale real-time testing and 

applications. Also to look how to reduce time scale of prediction less than a second. 

Supplementary Materials: The following supporting information can be downloaded at: 
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