Real-Time Hardness prediction using COTS Tactile Sensors for Robotic Grippers

11th International Electronic Conference on Sensors and Applications; Sensors, MDPI 26–28 Nov 2024

Yash Sharma, Sina Akhbari, Claire Guo, Pedro Ferreira, Laura Justham;

Loughborough University

Intelligent Automation Centre

Context

Background

•Robotic Grippers:

- Essential for manipulation in various fields (industrial automation, surgery).
- •Importance of Hardness Detection:
 - Crucial for applying appropriate force to avoid damage.

•Tactile Sensors:

• Customised sensors, finding ready to deployable to reduce development time and cost.

•Current Challenges:

• Accurate real-time prediction is challenging, COTS tactile Sensors less investigated.

> Objective

•Develop Hardness Prediction Model:

- Accurate real-time hardness prediction using COTS tactile sensors.
- •Integration with Robotic Grippers:
 - Easy in integration to enhance manipulation precision.
- •Validation and Testing:
 - Real time Prediction for reliability in real-world scenarios.

Ref: Subramanian Sundaram ,How to improve robotic touch.Science370,768-769(2020).DOI:10.1126/science.abd3643

How Robotic gripper can Predict in real time like human?

Background: Real time estimation using customised sensor

Embedded real-time objects hardness classification for robotic grippers

Points concluded

- •Accuracy-based prediction has been extensively highlighted in the literature.
- •Real-time prediction is often lacking in current studies.
- •Customized sensors have been widely used in research.
- •Investigations involving COTS sensors are limited, especially for real-time hardness prediction.
- •Hardness classification has been performed based on binary and ternary prediction models.
- •Real-time applications for hardness classification are often missing in the existing literature.

COTS Tactile sensors selectivity

Image_Ref: Sharma, Yash, Pedro Ferreira, and Laura Justham. 2024. "Hardness Classification Using Cost-Effective Off-the-Shelf Tactile Sensors Inspired by Mechanoreceptors" Electronics 13, no. 13: 2450. https://doi.org/10.3390/electronics13132450

Methodology (a)

Result for hardness classification

Approach for Hardness Prediction

Video Presentation Hardness Prediction

Result for Hardness Prediction outcome at first attempt

Unknown Object	S1-FSR (Prediction)	S2- Potentiometer (Prediction)	S3 Vibration (Prediction)
H(Metal)	Н	S	Н
S(TPU)	S	S	S
S(White sponge)	S	S	S

Unknown Object	S1-FSR (Prediction)	S2- Potentiometer (Prediction)	S3 Vibration (Prediction)
H(Metal)	F	Н	F
F(TPU)	F	F	F
S(White sponge)	н	S	F

Thank You

Q&A

References

 Y. Amin, C. Gianoglio, and M. Valle, "Embedded real-time objects' hardness classification for robotic grippers," Future Generation Computer Systems, vol. 148, pp. 211–224, Nov. 2023, doi: 10.1016/j.future.2023.06.002.
Y. Song, S. Lv, F. Wang, and M. Li, "Hardness-and-Type Recognition of Different Objects Based on a Novel Porous Graphene Flexible Tactile Sensor Array," Micromachines (Basel), vol. 14, no. 1, p. 217, Jan. 2023, doi: 10.3390/mi14010217.

3. S. Luo, J. Bimbo, R. Dahiya, and H. Liu, "Robotic tactile perception of object properties: A review," Mechatronics, vol. 48, pp. 54–67, Dec. 2017, doi: 10.1016/j.mechatronics.2017.11.002.

4. Y. Sharma, P. Ferreira, and L. Justham, "Hardness Classification Using Cost-Effective Off-the-Shelf Tactile Sensors Inspired by Mechanoreceptors," Electronics (Basel), vol. 13, no. 13, p. 2450, Jun. 2024, doi: 10.3390/electronics13132450.

5. "Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions," Soft Science, 2023, doi: 10.20517/ss.2022.34.

6. W. Yuan, C. Zhu, A. Owens, M. A. Srinivasan and E. H. Adelson, "Shape-independent hardness estimation using deep learning and a GelSight tactile sensor," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 951-958, doi: 10.1109/ICRA.2017.7989116. keywords: {Force;Tactile sensors;Force measurement;Shape;Geometry}.

7. Y. Sharma, P. Ferreira, L. Justham and M. Beatty, "Investigating the Use of Low-Cost Tactile Sensor in Emulating Mechanoreceptor Patterns and in Hardness-Based Classification," 2024 10th International Conference on Control, Automation and Robotics (ICCAR), Orchard District, Singapore, 2024, pp. 39-46, doi: 10.1109/ICCAR61844.2024.10569468

8. Zhang, Z. et al. (2021) 'Hardness recognition of fruits and vegetables based on tactile array information of manipulator', Computers and Electronics in Agriculture, 181, p. 105959. doi:10.1016/j.compag.2020.105959.