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Context

» Background
*Robotic Grippers:

* Essential for manipulation in various fields (industrial automation, surgery).
*Importance of Hardness Detection:

* Crucial for applying appropriate force to avoid damage.
*Tactile Sensors:

 Customised sensors, finding ready to deployable to reduce development time and cost.
*Current Challenges:

* Accurate real-time prediction is challenging, COTS tactile Sensors less investigated.

» Objective
*Develop Hardness Prediction Model.:
* Accurate real-time hardness prediction using COTS tactile sensors.
*Integration with Robotic Grippers:
 Easyinintegration to enhance manipulation precision.
*Validation and Testing:
* Realtime Prediction for reliability in real-world scenarios.
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Points concluded

*Accuracy-based prediction has been extensively highlighted in the literature.

*Real-time prediction is often lacking in current studies.

*Customized sensors have been widely used in research.

Investigations involving COTS sensors are limited, especially for real-time hardness prediction.
*Hardness classification has been performed based on binary and ternary prediction models.

*Real-time applications for hardness classification are often missing in the existing literature.




COTS Tactile sensors selectivity
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Methodology (a)
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Methodology (b)
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Accuracy (%)

Result for hardness classification

Comparison of Accuracy for two classes H and S
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Approach for Hardness Prediction
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Video Presentation Hardness Prediction
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