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Abstract: Nanocrystalline CuO-ZnO composite thin films were obtained by solid-phase 

pyrolysis with different molar ratios of Cu:Zn (1:99 and 5:95). X-ray diffraction analysis 

showed that the films are composed of two phases. According to scanning electron mi-

croscopy data, the film is solid and is formed by crystallites with an average size of 18 nm. 

The films have high transparency in the visible range. 
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1. Introduction 

One of the promising areas in modern chemistry is the development of multifunc-

tional film materials with specific physical and chemical characteristics. Zinc oxide is at-

tracting particular attention due to its properties as an n-type semiconductor with a wide 

band gap (Eg = 3.37 eV) [1]. Materials based on it are used in the production of optical 

devices [2], varistors [3], and solar cells [4]. 

The synthesis of thin films is achieved by various methods, such as pulsed laser dep-

osition [5], sol-gel [6], radio frequency magnetron sputtering [7] and spray pyrolysis [8]. 

It has been established that the formation of a p-n heterojunction through the doping of 

zinc oxide with materials having p-type conductivity, such as, Co3O4, CuO, and NiO, can 

lead to the creation of a photosensitive resistive materials [9,10]. 

Such materials also make it possible to obtain photodiodes with good performance. 

Thus, the paper [11] reports on the production of ZnO:Cu (n-CZO) thin films by pulsed 

laser deposition on silicon with p-type conductivity (p-Si). It was found that when ex-

posed to visible light, the photoreceptor of the n-p transition (n-CZO/p-Si) in reverse bias 

mode has a rise time and fall time of less than 150 ms. 

In this paper, we report on the production of nanocrystalline CuO-ZnO composite 

thin films by solid-phase pyrolysis. The presented results indicate the potential use of 

CuO-ZnO as a material for photosensitive elements. 

2. Materials and Methods 

The starting chemicals of zinc (II) acetate dihydrate, copper (II) acetate dihydrate and 

organic acid C20H30O2 were used to form thin CuO-ZnO films by solid-phase pyrolysis 

with a molar ratio Cu:Zn = 1:99 and 5:95. The synthesis of producing thin films is consist 
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of two stages and described in previous studies [12]. At the first stage, an intermediate 

product was obtained, which is a mixture of zinc and copper salts. Then, a solution of this 

intermediate product in an organic solvent was applied to pre-prepared substrates. The 

films were annealed at 600 °C during 2 h. 

The materials were examined by X-ray phase analysis (XRD) on an ARL’XTRA dif-

fractometer, CuKa1-radiation. Dislocation density (δ) and strain (ε) were calculated using 

the mathematical equations [13]. By scanning electron microscopy (SEM, scanning elec-

tron microscope Nova Nanolab 600) at 10 keV the surface morphology and thickness of 

the obtained materials were investigated. Spectra of the prepared films were measured 

with a UV-1100 ECOVIEW spectrophotometer in the wavelength range of 200–1100 nm at 

ambient temperature. The band gap (Eg) was determined using Tauc plots. 

3. Results and Discussion 

3.1. XRD 

X-ray diffraction patterns of nanocrystalline composite CuO-ZnO thin films are pre-

sented in Figure 1. The obtained materials are polycrystalline in nature and two-phase. 

The main phase is the hexagonal structure of wurtzite ZnO. However, with increasing 

additive content, peaks of the monoclinic crystal structure of CuO appear. Thus, the XRD 

analysis confirm the production of the CuO-ZnO composite material. No other phases 

were detected. 

 

Figure 1. X-ray images of CuO-ZnO films with Cu:Zn = 1:99 and 5:95 and standard sample from the 

database (curve ST ZnO and ST CuO). 

The intensity of the wurtzite peaks is much more pronounced than that of the tenorite 

peaks. Furthermore, the intensity of the peaks increases as the copper concentration in-

creases, which can be attributed to an improvement in the degree of crystallinity of the 

obtained materials. The dislocation density (δ) and strain (ε) and are listed in Table 1. Both 

parameters decrease, indicating a reduction in the number of defects occurring during 

film formation. 
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Table 1. Measurement of dislocation density and strain of CuO-ZnO thin films. 

Composition Δ × 10−3 (nm−2) Ε × 10−3 

Cu:Zn = 1:99 2.09 5.27 

Cu:Zn = 5:95 1.81 4.90 

3.2. SEM 

According to SEM data, the surface of the film is solid and has a uniform distribution 

of well-formed crystallites. The average size of the crystallites is 18 nm. The film is com-

posed of ZnO and CuO nanocrystallites that are evenly distributed throughout the film 

and are in contact with one another. This arrangement leads to the formation of n-p het-

erojunctions between the two oxides. 

 

Figure 2. SEM photos of surface (a,c) b distribution of nanocrystallites (b,d) in Cu:Zn = 1:99 (a,b) 

and 5:95 (c,d). 

3.3. Optical Properties 

As can be seen from the calculations, CuO-ZnO thin films have a fairly high disloca-

tion density, which indicates a high defect in the film structure. As a rule, films with such 

a structure have a complex type of optical absorption spectra, which is due to the existence 

of indirect interband transitions [14]. For them, the dependence of the absorption coeffi-

cient on the photon energy is more complex, which in general can be described by the 

function: 

α1/2 = f (hν), if ∆Eg  Ep < hν > ∆Eg + Ep (1) 

where α is the absorption coefficient; h is Planck’s constant; ν is the frequency of optical 

radiation; ∆Eg is the band gap; Ep is the energy of a photon that is absorbed or emitted 

during indirect transitions. 

Using the technique described in [15], the band gap and indirect interband transitions 

were determined using optical absorption spectra (Figure 3). 
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Figure 3. Determination of the band gap (a,b) and indirect interband transitions (c–f) for materials 

1CuO-99ZnO (a,c,e), 5CuO-95ZnO (b,d,f). 

The band gap width Eg(α2) of 1CuO–99ZnO thin films is 3.90 eV, and 5CuO–95ZnO 

is 3.87 eV. This is significantly higher than that of pure ZnO obtained by the same tech-

nology and equal to 3.26 eV [16]. The obtained Eg(α2) values are close to the band gap 

values of Co3O4-ZnO films obtained by us in the work [10]. An increase in the energy of 

direct transitions can occur as a result of the occupation of possible states in the conduc-

tion band by charge carriers [14]. It is evident from Figure 3a,b that it is also possible for 

there to be electron transition energies that are determined by film defects. Such transi-

tions are determined by the Eg(α0.5) dependences, which are shown in Figure 3c–f. The 

transition energy equal to 3.65 eV for 1CuO-99ZnO and 3.58 eV for 5CuO-95ZnO is close 

to the band gap of copper-doped zinc oxide (Eg = 3.3–3.5 eV) [17]. It follows from the data 

in Figure 4c,d that transitions with lower energy are also present in the film. A more thor-

ough analysis of this region (Figure 3e,f) showed that the energies are 2.78 and 3.13 eV for 

the 1CuO-99ZnO film; the energies are 2.87 and 3.13 eV for the 1CuO-99ZnO film. The 

found energy values of 2.78–2.81 eV correspond to the electron jump between the donor 

level of Cu2+ and the acceptor level of Cu+. And the transition energy of 3.13 eV can 
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correspond to transitions both between the acceptor level of Cu+ and the bottom of the 

conduction band, and between the vacancies of Zn and the top of the valence band [17]. 

Thus, the complex structure of the obtained films and the presence of copper (II) ox-

ide crystallites actually leads to a narrowing of the forbidden band of the CuO-ZnO com-

posite to 2.8 eV. As a consequence, the obtained materials will be sensitive not only to UV 

light, but also to visible radiation. This suggests that they can be used to create photosen-

sitive sensors of the resistive type. 
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