CIC 2025 Conference

4th Coatings and Interfaces **Online Conference**

21-23 May 2025 | Online

Inter-splat boundary effect on cold-sprayed nickel-based alloy coatings through mechanical and corrosion performance

G. Neelima Devi¹, S. Kumar¹

¹ International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad-500005, India.

INTRODUCTION & AIM

• Cold Spraying is a solid-state deposition process. Powder particles accelerate at supersonic velocities and deform on the substrate by making mechanical interlocking and metallurgical bonding.

Material

Titanium

Copper

Aluminium

Nickel

NiCr

IN625

IN718

Thermal

sensitivity (m)

0.655

1.09

0.895

1.44

1.44

1.146

. 1.3.

S. No.

3

9

10

RESULTS

Schematic of the cold spray process

Objectives

- 1. To deposit Ni and NiCr at higher particle temperatures and correlate the inter-splat bonding state with the corrosion and oxidation resistance of the deposited coatings.
- 2. To deposit IN625 and IN718 at lower stagnation temperature and pressure, and understand the role of inter-spalt bonding percentage in as-coated and heat-treated conditions through electrochemical and wear studies.

METHOD

Johnson–Cook (JC) Equation :

$\sigma = \left[A + B\varepsilon_p^n\right]$	$\left[1+C\ln\left(\frac{\dot{\varepsilon}_p}{\dot{\varepsilon}_0}\right)\right]$	$\bigg) \bigg] \bigg[1 - (T^*)^m \bigg]$
×	V	i
Strain	Strain rate	Thermal
hardening	hardening	softening

• The Johnson-Cook (JC) material model is a constitutive model used to describe the behavior of metals under high strain rates and hightemperature conditions. **Different Sets of Nozzles**

Experimental Details

CONCLUSIONS

- Ni, NiCr, IN625, and IN718 superalloy powders were successfully cold-sprayed using air as process gas at low pressure (20 bar).
- Particle temperature (T_n) is a significant parameter, along with particle velocity (V_n) , in the deposition of thermal-sensitive materials to achieve higher deposition rates.
- To get thicker coatings with good inter-splat bonding, higher particle temperatures are required. This can be achieved by increasing the nozzle convergent length or the gas temperature.

Depositing Powder	Processing Gas	Pressure (bar)	Temperature (° C)	Stand-off distance (mm)
Ni	Air	15, 20	600	15
IN625, IN718, NiCr		20	600, 650,700,750,800	

• Inter-spalt bonding percentage was estimated using the ABAQUS tool at a particular particle temperature (T_p) and particle velocity (V_p) . Tp and Vp were measured using ANSYS Fluent.

Bonded inter-splat boundaries (T > 0.5 Tm) Unbonded inter-splat boundaries (T < 0.5 Tm)

- Process property and performance correlation has been done by correlating the effect of inter-splat bonding state with functional properties of nickel-based alloy coatings such as oxidation, corrosion, tensile and wear properties.
- The deposition of high-temperature superalloys such as IN625 and IN718 using air as a process gas attracts not only academic interest but also implications in the field of repair and reclamation.

REFERENCES

- G. Neelima Devi, S. Kumar, T. Sharanya Balaji, Tarun Babu M, S.B. Chandrasekhar, A. Venu Gopal, A. Jyothirmayi, Influence of bonding state of as-sprayed splats on the performance of heat-treated cold sprayed Inconel coatings, Surf Coat Technol., 445 (2022) 128731.
- G. Neelima Devi, A. Venu Gopal, S. Kumar, Investigations on inter-splat boundaries of cold sprayed Ni-Cr coatings upon high temperature oxidation, Surf Coat Technol., 467 (2023) 129691.
- G. Neelima Devi, S. Kumar, Tarun Babu M, Gidla Vinay, Naveen M. Chavan, A. Venu Gopal, Assessing critical process condition for bonding in cold spraying, Surf Coat Technol., 470 (2023) 129839.