CIC 2025 Conference

4th Coatings and Interfaces **Online Conference**

21-23 May 2025 | Online

Nanocrystalline Diamond-Like Carbon Coatings Boost Field-Emission Efficiency of Silicon Nanowires

Kalyan Sarkar^{1*}, Sucharita Saha²

^{1,2}Senior Research Fellow, Energy Research Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata. E-mail: ¹<u>erks@iacs.res.in</u>, ²<u>erss2@iacs.res.in</u>

INTRODUCTION & AIM

- **Field emission (FE)** involves electron tunneling under high electric fields and is essential for devices like flat-panel displays, X-ray sources, and electron microscopes.
- Silicon Nanowires (SiNWs) offer excellent FE enhancement due to their sharp tips and high aspect ratio but suffer from oxidation and emission instability.
- * Nanocrystalline Diamond-Like Carbon (nc-DLC) coatings add chemical stability, high sp³ content, and negative electron affinity (NEA), improving emission performance.
- This study combines SiNWs with nc-DLC coatings to enhance FE efficiency.

- At T_{DLC} = 40 mins, C 1s XPS shows sp³ C-C content = 68.73%
- From Si-2p, the Si-C = 16.3%, which is the highest in the series.
- * We investigate how the **coating time (or coating layer's thickness)** influence the overall hybrid material (SiNW/nc-DLC) structure and field emission behavior.

Fig. 1: Schematic of the sequential steps forming SiNW/nc-DLC hybrid structures

- **Sinw Fabrication**: via **metal assisted chemical etching (MACE)** from crystalline Si wafers
- **nc-DLC Deposition**: in capacitively coupled plasma enhanced chemical vapour (CC-**PECVD)** deposition using CH_4/H_2 gas mixture ratio 1:1, 450 °C, 250 W RF power, 4 Torr pressure
- **nc-DLC Coating Time (T_{DLC}) Variation**: 10–60 min
- **Characterization**: Raman, XPS, SEM, TEM, FE characteristics

RESULTS & DISCUSSION

Raman Spectroscopy of nc-DLC layer coated on SiNWs

Cross-Scanning Electron Microscopy

- Higher I_{Dia}/I_D and I_{Dia}/I_G indicates more diamond-like crystalline orientation (sp³ C-C) relative to the disorderness and graphitic (sp² C=C).
- At T_{DLC} = 40 min, a moderate nano-crystallinity is obtained.

CONCLUSION

- Gineral Sinw/nc-DLC hybrids show significantly enhanced FE performance compared to bare SiNWs, Increasing sp³ content and nanocrystallinity with T_{DIC}, lowers the surface potential barrier and improves electron tunneling **Optimal DLC coating time (T**_{DLC} = 40 min) yields the best performance: Turn-on field (E_{ON}) reduced from ~5.80 V/µm (bare) to 4.60 V/µm, Emission current density (J_{e}) peaks at 1393.46 μ A/cm², Field enhancement factor (β) rises to 1676.01 **Over-coating (T**_{DLC} = 60 min) increases DLC thickness, leading to reduced emission $(E_{ON} = 5.05 \text{ V/}\mu\text{m}, \beta = 1518.34)$, highlighting the importance of thickness optimization. **Enhanced FE is attributed to**: sp³-rich nanocrystalline domains lowering the barrier grain boundaries and defects acting as emission sites. \Box Excessively thick coatings, however, reduce β by increasing emitter tip radius and
 - limiting electron escape