

4th Coatings and Interfaces **Online Conference**

21-23 May 2025 | Online

Continuous H_2O_2 Production via Non-Thermal Plasma (NTP) from O_2 **Saturated water**

Niwesh Ojha^{1*}, Kamal Kishore Pant¹

Department of Chemical Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667

INTRODUCTION & AIM

Conventional methods for hydrogen peroxide (H_2O_2) synthesis, such as heterogeneous catalytic processes, require hydrogen (H_2) and oxygen (O_2) as feedstocks, along with expensive noble metals and organic solvents. Such a method is energy-intensive and hazardous. In contrast, non-thermal plasma (NTP) generated within a dielectric barrier discharge (DBD) coaxial reactor provides 1 to 10 eV energy, sufficient to even drive thermodynamically unfavourable reactions by breaking molecular bond.

METHOD

Scheme 1. Pictorial representation of $g-C_3N_4$ synthesis from the melamine

This study investigates the direct synthesis of aqueous H_2O_2 by passing oxygen through varying flow rates in the non-thermal plasma reactor. The outlet gas from the plasma reactor is then bubbled into water, facilitating H_2O_2 production. This method relies solely on water, oxygen, gas, and electricity, offering an environmentally friendly alternative to traditional processes. Next, we integrated with photocatalytic process to enhance the product Yield.

- \checkmark Pressurized Storage of H₂ and O₂
- ✓ Can be raise safety concern
- ✓ Usage of rare earth Palladium for hydrogenation reaction

RESULTS & DISCUSSION

Assuming the formation of H_2O_2 follow zero order reaction with rate constant k_f and the decomposition of H_2O_2 follows first order with rate constant k_d .

Anthrahydroquinone Π2

Our proposed H₂O₂ production process: Sun light + O_2 + Photocatalyst \rightarrow H_2O_2 at Ambient conditions

✓ No Pressurized Storage of H₂ ✓ Integration of Renewable energy

such as Sunlight

✓ Usage of visible light active low-

cost catalysts

$\frac{dC}{dt} = k_f - k_d C; \quad \frac{dC}{dt} = k_d \left(\frac{k_f}{k_d} - C\right); \quad \frac{dC}{\frac{k_f}{k_d} - C} = k_d dt$

 $C = H_2O_2$ concentration at time t Integrating on both sides

CONCLUSION

ACKNOWLEDGEMENTS / REFERENCES

NTP-assisted photocatalytic reaction provided ~ 3 fold higher H_2O_2 generation than alone photocatalytic reaction in the continuous O₂ supply of 50 ml/min. This study showcase a novel strategy to improve the H_2O_2 production activity using visible light active and low cost $g-C_3N_4$. Also, shed light on the nonthermal plasma interaction at different gas flow condition at photocatalyst interface.

This research was financially supported by the Department of Science and Technology, INSPIRE faculty program fellowship (Grant DST/INSPIRE/04/2022/002668) by the Indian government.

Ind. Eng. Chem. Res. 2023, 62, 51, 21885.