

4th Coatings and Interfaces Online Conference

21-23 May 2025 | Online

Fabrication of thin-film composite nanofiltration membrane employing polyelectrolyte and metal–organic framework (MOF) via spin-spray-assisted layer-by-layer assembly

Farid Fadhillah

Chemical Engineering Department

College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432 Riyadh, Saudi Arabia

INTRODUCTION & AIM

• The problem with the existing membranes:

• hydrophilicity is irrelative with foulant adhesion

• zeta potential↑→EL interaction and energy barrier↑→foulant adhesion↓

• roughness $\uparrow \rightarrow$ total interaction \downarrow

Figure 3. SEM image of NF membrane (left pristine (PEI/PSS)₅, right: after MOF303 deposition

RESULTS & DISCUSSION

Table 1. Surface properties of NF Membrane

Properties	(PEI/PSS) ₅	(PEI/PSS) ₅ -MOF303
Surface Charge, mV	2.43	18.7
Contact angle, ⁰	17.88 ± 0.61	25.60 ± 2.61

 certain roughness range → continuously repulsive total interaction

 \uparrow means increase \downarrow means decrease

Figure 1. Effect of surface Properties on membrane fouling (adapted from (1))

- The role of using layer-by-layer (LbL) assembly here is to modify the properties of the membrane easily. LbL is generally known for producing smooth and highly hydrophilic surfaces depending on the polyelectrolyte
 - Poly(ethylene imine) and poly(4styrene sulfonate) were used in this work.
- Why use spin spray LbL?
 - Spin Ibl is the fastest LbL assembly but has main challenge in scalability
 - Spray Lbl is still faster than dip LbL and does not have problems with scalability and film uniformity of various types of surfaces.
 - Combining the two techniques can overcome the problems of the individual techniques
- Why use MOF303?
 - Successful application in nanofiltration. (2)
 - antiadhesive and antimicrobial properties (3)

METHOD

Table 2. Performance of NF Membrane

Performance*	(PEI/PSS) ₅	(PEI/PSS) ₅ -MOF303		
MOF-303 size, nm		1251.2 (dispersed by bath sonicator)	826.0 (dispersed by probe sonicator)	
Rejection Rate, %	42.61 ± 2.58	18.94 ± 1.58	47.01 ± 0.63	
Permeability, I/m ² .h.bar	9.46±0.46	0.91 ± 0.13	8.33 ± 0.11	
*Testing condition: 2000 ppm NaCl, T = 25 ⁰ C, P = 10 bar				

Figure 4. Fouling test of MOF-303 Polyelectrolyte multilayer NF Membrane (foulant : bovine serum albumin)

CONCLUSION

Figure 2. Method of preparing MOF-303 Polyelectrolyte multilayer NF Membrane

- Successful deposition of MOF303 via spin spray LbL
- The size of the particle plays critical role in the membrane performance
- Maintain Membrane performance and improve the rejection due to increase of surface charge
- Showing improved fouling resistance compared to pristine (PEI/PSS)₅ (pristine membrane shows reduction of flux to 67% while MOF303 shows 74%)

FUTURE WORK / REFERENCES

- Optimizing the parameters such as spin speed, particle size
- Characterize the stability of MOF303 incorporation before and after the permeation test.
- Applying the same method for various combinations of polyelectrolytes and biocidal MOF
- (1) Bioresource Technology, 175, 59-67 (2015)
 (2) Nat Commun 15, 10264 (2024)
- (3) Environ. Sci. Technol. 51, 10, 5511–5522 (2017)