IECE 2025 Conference

The 2nd International Electronic Conference on Entomology

19-21 May 2025 | Online

Bee pathogens in Apis florea samples accidentally introduced into Malta and Italy

Sabrina de Leo¹, Laura Zulian¹, Fulvio Bordin¹, Giovanni Federico², Paolo Zucca³, Charles Spiteri⁴, Franco Mutinelli¹, Anna Granato¹

¹National Reference Laboratory for Honey bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (Padova), Italy ²Istituto Zooprofilattico Sperimentale del Mezzogiorno, Località Catona, Via Figurella, snc 89135 Reggio di Calabria, Italy ³Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, Trieste, Italy

³Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, Trieste, Italy

⁴Animal Health and Welfare Department, Ministry for Agriculture, Fisheries and Animal Rights, Abattoir Street, Albert Town, Marsa, Malta

INTRODUCTION & AIM

Apis florea, the red dwarf honey bee (Figure 1), is a wild bee species native to Asia. Its adaptability and nesting behaviour make it a potential invasive alien species.

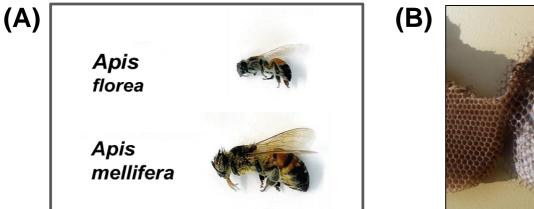


Figure 1. A. florea vs A. mellifera (A); nest of A. florea discovered at the port of Gioia Tauro, Italy (B).

In 2024, after the first detection in Europe of a fully established colony of *A. florea* in Malta (Uzunov *et al.* [1]), a nest was found in the same area near the Malta Freeport Terminals, in the southern part of the island (Figure 2A). In May of the same year, a small nest of *A. florea* was discovered at the port of Gioia Tauro, in the Calabria region (Italy), on the wall of a container coming from India (Figure 2B). This study aims to investigate the presence of known and emerging honey bee pathogens in *A. florea* samples in order to increase the available knowledge on this species and assess the potential introduction of novel pathogens in the local apoidean population.

RESULTS

Among all the pathogens investigated, viral coinfections were found only in the sample from Malta; the results are presented in table 2.

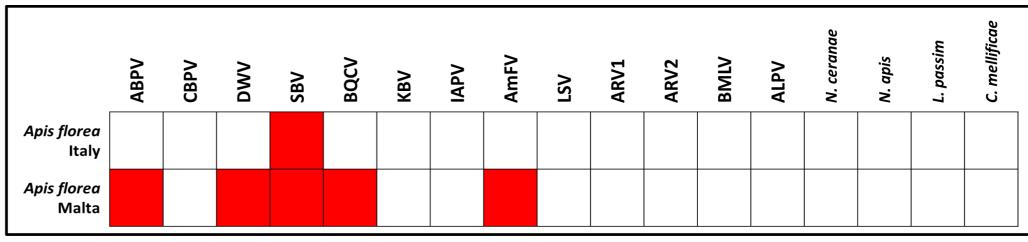


Table 2. Pathogens detected (red square) in A. florea samples collected in Italy and Malta.

The sequence of the AmFV amplification product (~551 bp) showed 97% identity

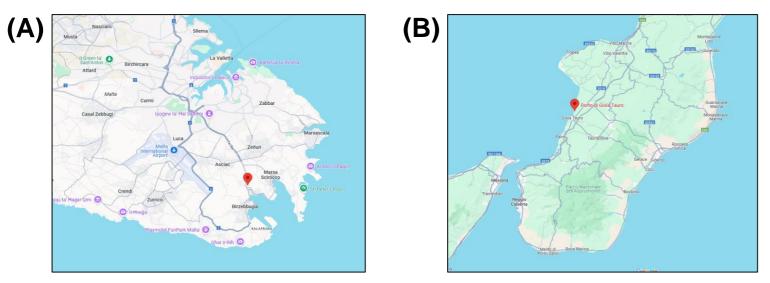


Figure 2. Locations where A. florea was found in Malta (A) and Italy (B)

METHODS

From each nest, after morphological identification of the samples, a pool of 25 bees was homogenized. RNA and DNA extraction were performed using the High Pure Viral Nucleic Acid Kit (Roche Diagnostics) and the QIAamp[®] DNA Mini Kit (Qiagen), respectively. The presence of pathogens was investigated using the methods reported in Table 1. Confirmation of *A. florea* species was performed by sequencing a region of the mitochondrial cytochrome c oxidase subunit I (COI) gene (Folmer *et al.* [2]).

METHODS	PATHOGENS	PRIMER & PROTOCOL REFERENCE
Real time RT-PCR	Acute BeeParalysis Virus (ABPV) Chronic Bee Paralysis virus (CBPV) Deformed Wing Virus (DWV) Sacbrood Virus (SBV)	Bordin <i>et al.</i> [3]

with the sequences available in the GenBank database (accession number: OR371979.1). Sequencing analysis of COI gene PCR products (~710 bp) confirmed the morphological identification of *A. florea* with an identity of 98.32% and 97.68% for the Italian and Maltese samples, respectively (GenBank accession number: AP018491.1).

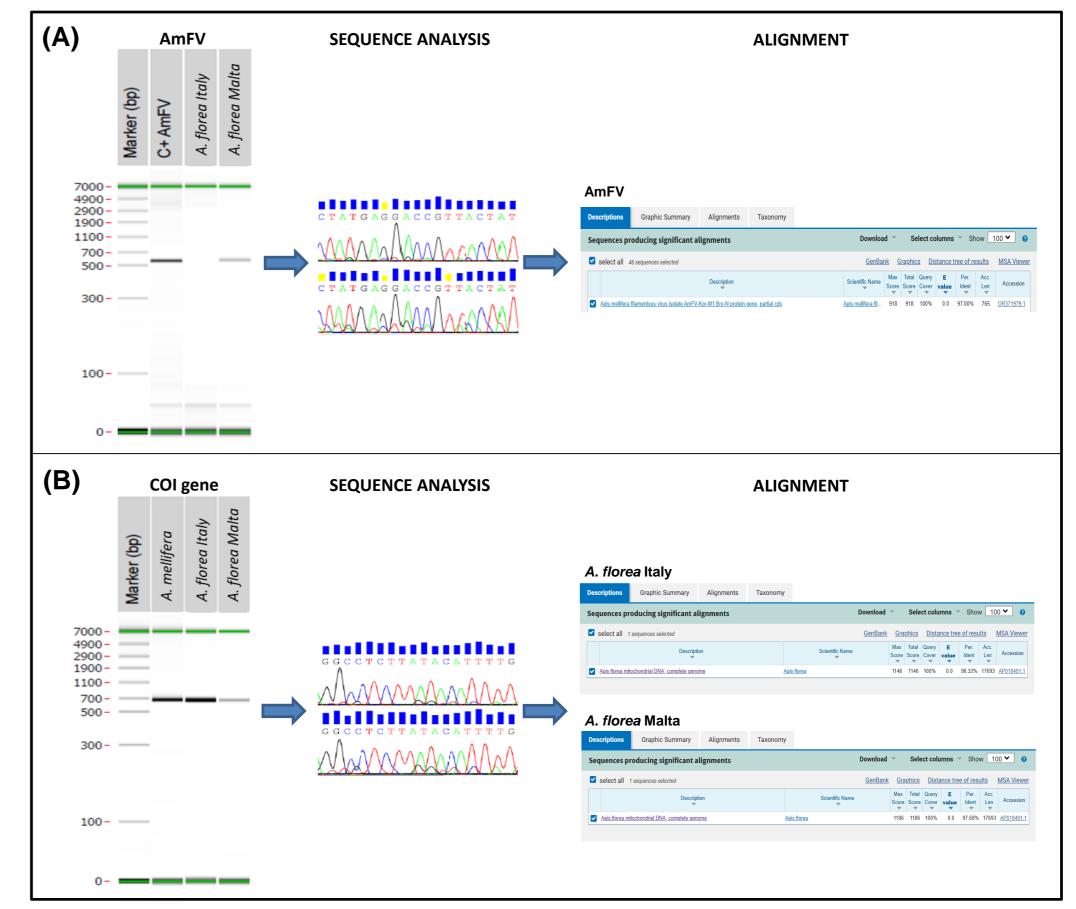


Figure 3. Capillary electrophoresis of the PCR products, sequence analysis and alignment for AmFV (A) and the COI gene (B).

	Black Queen Cell Virus (BQCV)	
One step RT-PCR	Kashmir Bee virus (KBV) Israeli Acute Paralysis Virus (IAPV)	Bordin <i>et al.</i> [3]
Two step RT-PCR	Lake Sinai Virus (LSV) Rhabdovirus-1 (ARV-1) Rhabdovirus-2 (ARV-2) Bee Macula-like Virus (BMLV) Aphid Lethal Paralysis Virus (ALPV)	Wamonje <i>et al.</i> [4] Levin <i>et al.</i> [5] Eliash <i>et al.</i> [6] deMiranda <i>et al.</i> [7] Hou <i>et al.</i> [8]
PCR	Apis Mellifera Filamentous Virus (AmFV) Nosema ceranae/Nosema apis Lotmaria Passim/Chritidia Mellificae	Hartmann <i>et al.</i> [9] Martín-Hernández <i>et al.</i> [10] Bartolomé <i>et al.</i> [11]

Table 1. Methods, primers and protocols' references for each pathogen investigated

Amplification products for IAPV, KBV, AmFV, ALPV, ARV-1, ARV-2, BMLV, LSV and the COI gene were analyzed by capillary electrophoresis on LabChip GX Touch HT[®] (Perkin Elmer). If present, the PCR products were sequenced using Sanger method and the sequences were compared with those available in the GenBank database using BLAST software.

CONCLUSIONS

The spread of *A. florea* in the Mediterranean region, due to global trade, poses an ecological risk to local biodiversity. Furthermore, the presence of pathogens in *A. florea* populations raises concerns about their potential introduction and spread to local honey bee populations, highlighting the need to monitor the potential presence of *A. florea* nests through an early warning system and to take prompt action for their eradication.

REFERENCES

[1] Uzunov *et al.* Apis florea in Europe: first report of the dwarf honey bee in Malta. Journal of Apicultural Research. 2024; 63(5): 1122–1125. [2] Folmer et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates Molecular Marine Biology and Biotechnology 1994; 3(5): 294-299. [3] Bordin F. *et al.* Presence of Known and Emerging Honey Bee Pathogens in Apiaries of Veneto Region (Northeast of Italy) during Spring 2020 and 2021. Appl. Sci. 2022; 12: 2134. [4] Wamonje F.O. *et al.* Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virol J. 2017; 14(1):188 [5] Levin S. *et al.* Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents. Front. Microbiol. 2017; 8: 2482. [6] Eliash N. *et al.* Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 284: 20. [7] de Miranda J. et al. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor. Viruses. 2015; 7: 3586-3602 [8] Hou C. *et al.* Lake Sinai virus is a diverse, globally distributed but not emerging multi-strain honeybee virus. Mol. Ecol. 2023; 32: 3859–3871. [9] Hartmann U. *et al.* Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites. Viruses 2015; 7(5): 2654-67. [10] Martín-Hernández *et al.* Outcome of colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 2007, 73: 6331–6338. [11] Bartolomé *et al.* A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J. Invertebr. Pathol. 2018; 154: 37–41.

https://sciforum.net/event/IECE2025

Contact information: sdeleo@izsvenezie.it