

The 2nd International Electronic **Conference on Entomology**

19-21 May 2025 | Online

From Maize to Soybean: How Fall Armyworm Thrives Across Crops

Shubham Sharma¹, Prajjval Sharma¹

¹ Research Scholar, Department of Entomology, CSK HPKV Palampur, HP (INDIA)-176062 **⋈** shubhamsharmacskhpkv@gmail.com

INTRODUCTION & AIM

- ✤ Fall Armyworm (Spodoptera frugiperda, J.E.Smith, Lepidoptera: Noctuidae) is a major invasive pest that has rapidly spread across India since its 2018 invasion, threatening maize production and food security.
- ✤ In India, the continuous cultivation of maize, popcorn, sweet corn, sorghum, and soybean provides a steady food source, enabling FAW survival and migration.

RESULTS & DISCUSSION

 Table 1. Development of Spodoptera frugiperda on different hosts

Stage (Days)	Ν	Maize	Ν	Popcorn	Ν	Sweet corn	Ν	Sorghum	Ν	Soybean
Egg	100	2.00 ± 0.00	100	2.00 ± 0.00	100	2.00 ± 0.00	100	2.00 ± 0.00	100	2.00 ± 0.00
Total larval duration	57	$14.57\pm0.43d$	56	$15.43 \pm 0.37c$	53	15.17 ± 0.65 cd	51	$16.86\pm0.46b$	45	19.38 ± 0.56a
Pre-pupa	56	$2.47\pm0.07^{\text{bc}}$	53	$2.37\pm0.07^{\rm c}$	51	2.37 ±0.07 ^c	48	$2.60\pm0.08^{\text{b}}$	44	$3.23\pm0.10^{\mathrm{a}}$
Pupa	53	$9.14 \pm 0.3c$	49	$8.72\pm0.25c$	49	$9.13 \pm 0.28c$	45	$10.46 \pm 0.24b$	40	$11.36 \pm 0.26a$
Pre-adult	49	$28.04\pm0.44c$	46	$28.02 \pm 0.28c$	45	$28.31 \pm 0.29c$	41	$31.20 \pm 0.46b$	36	$34.83 \pm 0.38a$
Female longevity	30	$12.60 \pm 0.18b$	24	$13.25 \pm 0.22a$	28	13.14 ± 0.20a	13	$10.69 \pm 0.33c$	20	$9.60 \pm 0.40d$
Male longevity	19	$9.37\pm0.22b$	22	$9.95\pm0.14a$	17	$10.18\pm0.18a$	28	$7.14 \pm 0.23c$	16	$6.75 \pm 0.56c$

FAW infestation causes significant economic losses, emphasizing the need to study its demographics and damage potential. This study systematically assesses its impact across crops and threat to Indian agriculture.

METHOD

- \bullet Developmental biology and food consumption of S. frugiperda fed on maize, popcorn, sweet corn, sorghum, and soybean were studied using a cohort of 100 eggs under controlled conditions (25 ± 0.5°C, 14L:10D photoperiod, and $70 \pm 5\%$ relative humidity). Fresh leaves of respective host were provided daily until pupation.
- Population growth parameters and host feeding potential were assessed on different crops by recording key biological parameters and daily leaf consumption using LICOR 3100A.
- ♦ Using the TIMING computer program (Chi 2022), the population growth and leaf consumption of *S. frugiperda* were projected.

Figure 1. Damage symptoms of *Spodoptera frugiperda*

Table 2. Population growth parameters and host feeding potential of Spodoptera frugiperda on different hosts

Parameter	Maize	Popcorn	Sweet corn	Sorghum	Soybean
Net reproductive rate (R ₀)	$404.46 \pm 62.78a$	$337.36\pm60.69a$	$386.71 \pm 62.62a$	$137.83\pm36.05b$	$144.36\pm29.76b$
(offspring/individual)					
Intrinsic rate of increase (r)	$0.1870 \pm 0.0053a$	$0.1759 \pm 0.0058a$	$0.1787 \pm 0.0053 a$	$0.1375 \pm 0.0081 b$	$0.1248 \pm 0.0054b$
(offspring/individual /day)					
Finite rate of increase (λ)	$1.2056 \pm 0.0063a$	$1.1924 \pm 0.0069a$	$1.1956 \pm 0.0063a$	$1.1474 \pm 0.0092b$	$1.1329 \pm 0.0061b$
(times/day)					
Mean generation time (T)	$32.11\pm0.3c$	$33.09\pm0.31c$	$33.34\pm0.34c$	$35.83\pm0.56b$	$39.84 \pm 0.49a$
(days)					
Doubling time (DT)	$3.71\pm0.11b$	$3.94\pm0.13b$	$3.88\pm0.12b$	$5.04\pm0.32a$	$5.55\pm0.25a$
(days)					
Net consumption rate (C ₀)	16541.76±1594.61a	13327.31 ± 1214.93a	14415.38 ± 1326.30a	$9187.05 \pm 880.45 b$	$6647.11 \pm 741.78c$
Transformation rate (Q _p)	$40.90\pm5.21b$	$39.50\pm 6.53 ab$	$37.28\pm5.16b$	$66.65\pm20.62a$	$46.05\pm8.92ab$
Stable consumption rate (Ψ)	$360.06 \pm 26.01a$	$312.04 \pm 19.24a$	$332.55\pm22a$	$245.8\pm15.96b$	$168.02 \pm 12.7c$
Finite consumption rate (\omega)	$434.09 \pm 33.01a$	$372.06 \pm 24.11a$	397.61 ± 27.46a	$282.02\pm19.03b$	$190.36 \pm 14.94c$

Figure 3. Projection of population growth potential and feeding potential of Spodoptera frugiperda reared on different hosts

Figure 2. Identification features of Spodoptera frugiperda larva

CONCLUSION

S. frugiperda's ability to develop on multiple hosts, including soybean, highlights its potential threat to intercropping systems and adaptability to alternate hosts.

REFERENCES

Chi H. (2022) Timing-MS Chart: Computer program for population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan. http://140.120.197.173/Ecology/

https://sciforum.net/event/IECE2025