Occurrence of Botrytis cinerea across honeybees, hives, and blueberry flowers and fruit on farms in the Western Cape,

South Africa

Marchelle Ludick¹, Jacquie E. van der Waals^{2,3}, Hannelie Human¹, Christopher W. Weldon¹

- Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield 0028, South Africa
- Citrus Research International, Mbombela, South Africa

Introduction

Pollination by honeybees (Apis mellifera) is an essential ecological service, particularly in South Africa's growing blueberry industry. Honeybees may, however, also act as vectors of Botrytis cinerea, a destructive fungal pathogen causing blossom blight and grey mould of blueberries. Disease caused by *Botrytis* significantly impacts fruit quality and quantity.

Methods

- a. Sample collection
- Six commercial blueberry farms in the Western Cape
- Two different blueberry varieties
- Farms categorised into historic B. cinerea disease (high, medium pressure and low)
- Samples collected:
 - Blueberry fruits

b. Sample processing

Samples plated on *Botrytis* selective media

Plates incubated at 25 °C in the dark

Plates grouped based on morphology

Subcultured + hyphal tipped

To investigate the presence of *B. cinerea* on honeybees and hives in Western Cape blueberry farms, and determine whether its presence is related to disease incidence on blueberry flowers and fruit

Aim

Objectives

- Determine the presence of *B. cinerea* on honeybee workers and hives in Western Cape blueberry farms
- Determine whether B. cinerea incidence on honeybees and hives is related to incidence on blueberry flowers and fruit

significant

(p > 0.05)

Not significant

5

- **Blueberry flowers**
- Hive entrance swabs
- Honeybee workers

c. Statistical analysis

- R and RStudio
- Generalized linear
- fixed-effects models
- (binomial data)
- Linear regression

Pure *B. cinerea* cultures

DNA extracted

PCR + gel electrophoresis

Sanger sequencing

Results

Botrytis cinerea presence on flowers and blueberries:

- Three-way and two-way interactions Not
- Main effects:
 - Status
 - Variety

Botrytis cinerea presence on hive swabs:

- Main effects:
 - Variety

Botrytis cinerea presence on honeybees:

- Significantly lower on medium pressure compared to high pressure farms (p < 0.05)
- Two-way interaction -
- Main effects:
- Status
- Variety

Regression:

Positive slope •

Discussion and Conclusion

- Botrytis cinerea was isolated from blueberry flowers, fruits, honeybees and hive entrances
- In this study, the presence of *B. cinerea* on:
 - Blueberry flowers, fruits and honeybees was not significantly predicted by Farm Status or Variety
 - Honeybee hive entrances was significantly predicted by historically observed *B. cinerea*
 - Botrytis cinerea is ubiquitous and produces overwintering structures that survive on plant debris and on the soil surface
 - The highest amount of *B. cinerea* was isolated from honeybee hives placed near the soil

surface

- No significant relationship was found between the incidence of *B. cinerea* on blueberry plants and on the honeybees and hive swabs
- Honeybees are not a primary source of inoculum spread under the tested conditions • If a farm has a history of high *B. cinerea* presence, control methods should be put in place to reduce
- inoculum buildup • The control of *B. cinerea* is difficult, and environmental factors should be taken into consideration when planning management strategies