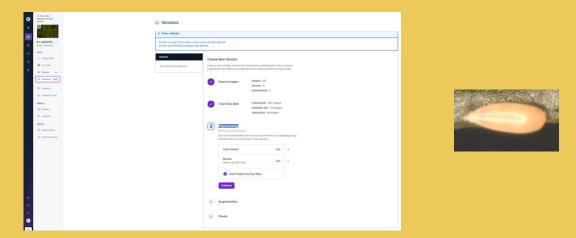
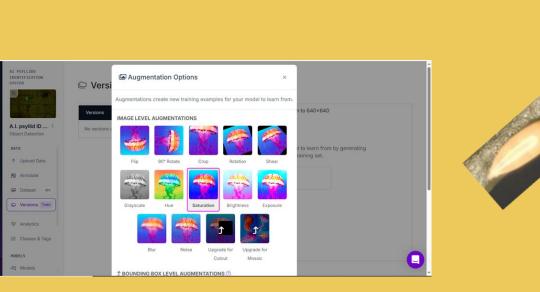


Vision-based automated systems are a promising way to speed up the identification process of pest psyllids like D. citri and T. erytreae

Potential for automation of citrus pest identification using computer vision-based artificial intelligence recognition

Background:	Psyllid pests are significant vectors of a greening disease that affects citrus. <i>Trioza erytreae</i> , a native psyllid, transmits citrus greening disease associated with ' <i>Candidatus</i> Liberibacter africanus'				
	However, South Africa faces the threat of an incursion by <i>Diaphorina citri</i> , a highly efficient vector of Huanglongbing (HLB) that is associated with ' <i>Candidatus</i> Liberibacter asiaticus' Detection of psyllid pests is crucial for effective management, with yellow sticky traps being commonly used				
	Identification of psyllids on traps is done manually, but is time consuming and delays control needed to prevent disease spread				
Result:	Mean average precision (mAP), precision, recall and time per sticky trap for five trained models.				
YOLOv8s was most precise, but YOLOv8m was the most sensitive without sacrificing accuracy.					
Model	mAP	Precision	Recall	Time per trap (seconds)	
YOLOv8s	0.849	0.905	0.777	6.7	
YOLOv8m	0.845	0.897	0.797	12.7	
YOLOv8n	0.831	0.742	0.859	3.7	
YOLOv8l	0.797	0.797	0.786	21.4	
YOLOv8x	0.781	0.777	0.689	29.2	Trioza erytreae
Methods					


NIELIIOUS



Trap collection

Trap photography

12 x 7 * * 0 *

Image annotation

The A.I. developmental process from trap collection to model testing, using 875 cropped images that were augmented, processed, and then split into training, validation, and testing datasets in a ratio of 7:2:1

<u>Dylan Pullock¹, Congliang Zhou², Yiannis Ampatzidis², Kerstin Krüger^{1,3}, Aruna Manrakhan^{4,5}, Christopher Weldon¹</u>

Email: dylanpullock@gmail.com, congliang.zhou@gmail.com, i.ampatzidis@ufl.edu, kerstin.Krueger@kws.com, aruna@cri.co.za, cwweldon@zoology.up.ac.za

¹Department of Zoology and Entomology, Forestry and Agriculture Biotechnology Institute (FABI), University of Pretoria, South Africa ²Agricultural and Biological Engineering Department, Southwest Florida Research and Education Center, University of Florida, USA ³KWS SAAT SE & CO. KGaA, Grimsehlstraße 31, 37574 Einbeck, Germany ⁴Citrus Research International, Mbombela, South Africa ⁵Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa

