A Comparative Analysis of the Secondary Metabolites and Antibacterial Properties of Medicinal Plants available in Dhaka

City, Bangladesh

Shakib Ahmed¹, Samira Latif¹, Sabbir Rahman Shuvo¹, Ishrat Jabeen^{1*} ¹Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh. Email Address: shakib.ahmed.2315402@northsouth.edu

Introduction

- Medicinal Plants have been used for centuries to treat various ailments. It is a great source of bioactive compounds like secondary metabolites [1].
- Considering the threat of antibiotic escalating resistance, scientists are research into the therapeutic use of medicinal plants.
- This study highlights the potential of using medicinal plants like aloe vera mint leaf to mark the threat of antibiotic resistance.

Figure 1: Mechanism of action of bioactive medicinal plants against bacterial pathogens.

Methods

Objectives

- \triangleright Identification of plant secondary metabolites such as flavonoids, tannins, saponins & carotenoids isolated from medicinal plants, followed by Polymerase Chain Reaction (PCR) to investigate the presence of CHS, SQS, LAR & PSY genes.
- Assessment of the antibacterial potency of such phytochemicals using agar well diffusion and Minimum inhibitory concentration (MIC).

ECA

Conference

Preparation of ethanolic & methanolic extract of aloe vera and mint.

Identification of secondary metabolites.

Performing PCR of targeted genes.

Performing agar well diffusion for antibacterial profiling.

Performing MIC for antibacterial profiling.

Figure 2: Secondary metabolites analysis of selected medicinal plants.

Figure 5a: Gel image of CHS PCR product. **M= Marker, 1= Aloe vera 1, 2= Aloe vera 2, 3= Aloe vera 3, 4= Mint 1, 5= Mint 2, 6= Mint 3**

Figure 3: Antibacterial activity of medicinal plant extracts(1X & 2X ethanol &methanol) against Klebsiella pneumoniae, Escherichia fergusonii, Enterobacter cloacae & Citrobacter amalonaticus.

Figure 5b: Gel image of LAR PCR product.

Figure 5c: Gel image of SQS PCR product

Figure 4: Minimum inhibitory concentration of medicinal plant extracts against Klebsiella pneumoniae, Escherichia fergusonii, Enterobacter cloacae & Citrobacter amalonaticus.

Figure 5d: Gel image of *PSY* PCR product

Key Findings

- ✤ Both extracts showed consistent phenotypic results. None of the samples contains all four tested secondary metabolites.
- * Methanolic extracts showed higher antibacterial activity than ethanolic extracts. Mint leaf was found to have a higher antibacterial potency compared to aloe vera.
- ✤ Aloe vera showed positive results in genotypic analysis, containing all four secondary metabolites. Mint doesn't contain any of the targeted genes in this study.

Acknowledgement

We extend our heartfelt gratitude to the Department of Biochemistry & Microbiology, North South University, for allowing us to conduct this study.

Conclusion/Future Work

- The findings of this study are mixed. Some irreproducible results were found in genotypic and phenotypic comparisons. However, the presence of secondary metabolites addresses their therapeutic potential.
- Research can be conducted using a larger number of samples to identify underlying mechanisms.

References

1. Twaij, B.M. and Hasan, Md.N. (2022) 'Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses', International Journal of Plant Biology, 13(1), pp. 4–14.