

The 4th International Electronic Conference on Antibiotics

21-23 May 2025 | Online

In Silico Design and Docking of Novel Benzimidazole Derivatives as Inhibitors Targeting AcrB Efflux Pump and NDM-1 Carbapenemase: Strategies to Combat Antibiotic Resistance Yusuf Jimoh*, Ummulkhair Sani, Abdullahi Ahmad

Department of Pharmaceutical and Medicinal Chemistry, Ahmadu Bello University, Zaria 810107, Nigeria

INTRODUCTION & AIM

- Antibiotic resistance, driven by AcrB efflux pumps and NDM-1 carbapenemases, threatens global health, potentially causing 10 million deaths annually by 2050 [1].
- AcrB expels antibiotics from Gram-negative bacteria (e.g., E. coli), • while NDM-1 hydrolyzes carbapenems, a last-resort treatment [4,5]. Dual-action inhibitors targeting both mechanisms are needed to restore antibiotic efficacy.
- Benzimidazole derivatives have gained attention in medicinal • chemistry for their versatile pharmacological properties, including antibacterial activity [9].

RESULTS & DISCUSSION...

MDP

Table 1: Bioavalability and toxicity of novel benzimidazole derivatives based on lipinski's rule of five, GI absorption, LD₅₀, and toxicity class

Compoun d ID	Lipinski's rule of five ^b							
	Mol.Wt ^a	HbA	HbD	MLogP	GI	Inference	LD ₅₀ (mg/kg)	Toxicity Class
B1	311.16	5	2	4.49	High	Pass	800	4
B2	299.13	6	1	3.82	High	Pass	500	1
B3	268.00	2	2	4.53	High	Pass	729	4
B4	316.12	4	1	3.93	High	Pass	3420	5

Aim: Design and evaluate novel benzimidazole derivatives as dual inhibitors of AcrB and NDM-1 using in-silico methods to combat multidrug-resistant bacteria.

B5	346.13	5	1	4.00	High	Pass	2000	4
----	--------	---	---	------	------	------	------	---

(a) Molecular weight in g/mol, (b) [20] (Mwt \leq 500, MLogP \leq 5, HbA \leq 10, and HbD \leq 5

Table 2: Binding Energies of novel benzimidazole derivatives and cocrystallized ligands for AcrB and NDM-1

Compound ID	6KZL	5ENO
	(Kcal/mol)	(Kcal/mol)
E1C	-5.8	-
5QG	-	-11.0
B1	-6.9	-9.5
B2	-6.5	-8.7
B3	-6.7	-11.1
B4	-6.7	-11.0
B5	-7.0	-10.6

PDB ID: 6KZL = NDM-1 Carbapenemase- matallo-beta-lactamase, PDB ID: 5ENO= AcrB Efflux Pump Gram-negative bacterial, E1C and 5QG are the co-crystallized ligands for the respective enzyme

Five novel benzimidazole derivatives (B1–B5) show promise as dual-action inhibitors of AcrB and NDM-1, with favorable drug-likeness, low toxicity (B4: LD₅₀ 3420 mg/kg), and strong binding affinities (B3: -11.1 kcal/mol AcrB, B5: -7.0 kcal/mol NDM-1). Key interactions (hydrogen bonds, pi-pi stacking) support their inhibitory potential. In-silico methods highlight their value in drug discovery. Experimental validation is needed to advance these candidates against antibiotic-resistant bacteria.

FUTURE WORK / REFERENCES

Synthesize B3, B4, B5 for in-vitro/in-vivo testing against resistant E. coli and K. pneumonia.

References

[1] WHO. Global Report on Surveillance 2014. WHO 2014 AMR Rep 2014:1-8. [4] Maurya N, et al. Microb Drug Resist 2019;25:1155-63. [5] Grewal AS, et al. Med Chem Res 2020;29:1301-20. [21] Skariyachan S, et al. Infect Genet 2020;82:104314. [22] Alkhatabi HA, et al. Pharmaceuticals 2024;17:1183

https://sciforum.net/event/ECA2025