## **IECHo** 2025

## Conference los angeles MDP college

# **Exploring plant expression of alkaloid related** genes in Dendromecon rigida and the plant's relationship with the rootzone microbes



Savanah Senn<sup>1</sup>, Steven Carrell<sup>2</sup>, Ray A. Enke<sup>3</sup>, Rayne Stanis<sup>4</sup>, Jordan Schoonover<sup>1</sup> and Gerald Presley<sup>5</sup> 1 Los Angeles Pierce College Department of Agriculture Sciences, Plant Science program, Woodland Hills, CA, 91371, USA 2 Oregon State University, Center for Quantitative Life Sciences, Corvallis, OR 97331, USA 3 James Madison University, Biology Department, Harrisonburg, VA 22807, USA 4 Oregon State University, Department of Horticulture, Corvalis, OR, 97331, USA 5 Oregon State University, Department of Wood Science and Engineering, Corvallis, OR 97331

## Introduction

We established the first transcriptome of *Dendromecon rigida*, known as Tree Poppy. It can be distinguished from other *Papaveraceae* by its lanceolate leaves and woody stems, which are uncommon for the family. During the same sampling event, we procured metagenomic data from the rootzone soil bacteria. Alkaloid production and gene expression in this plant have been little studied, although the plant's resilience following a disturbance is most certainly related to its secondary metabolites as well as its fire ecology. The interest in this plant comes from its resistance to pathogens, as well as its potential for synergy in the production of secondary metabolites with rootzone microbes, based on our previous work. The plant is known to have few pest and disease problems due to the high amount of antifungal, antioxidant, anti-herbivory, and insecticidal compounds like berberines within it.



### Methods and Materials

The data we procured consisted of 16S metabarcoding, WGS metagenomics, and plant whole transcriptome data from Tree Poppy leaf, flower, and fruit. The metagenomics analysis employed QIIME2, Nephele, and STAMP. The plant transcriptome was assembled de novo in Trinity, expression was quantified with salmon, and





completeness was assessed using BUSCO. Transcripts were annotated with the best SPROT blastx hits, and of those with a length> 1000 and TPM>10, a subset of secondary metabolite and resistance genes were selected for further analysis.



#### Figure 3 - Description here

#### Results

The assembly had a total of 369,483 transcripts with an average length of 856 and a high degree of completeness >95%. From the transcripts, several candidate genes for alkaloid production were identified including methyltetrahydroprotoberberine, (RS)-norcoclaurine, S-stylopine, and 3-O-actylpapaveroxine. Protoberberines have antifungal properties and contribute to allelopathy. Norcoclaurine is a precursor to benzoisoquinoline alkaloids and is present in other Papaveraceae. S stylopine is bitter and deters insects and animals from eating the plant. Papaverine is an antifungal precursor to hebaine, common in fire-adapted plants in this family.

Compared with other plants from the nearby area on the Green Trail, including Wooly Blue Curls and Yerba Santa, Tree Poppy rootzone soil samples showed a higher proportion of reads from Actinomycetales. When compared with Coast Live Oak rootzone samples from the Gold Creek Preserve, Tree Poppy soil samples reflected elevated copies of mycothiol production genes in the metagenomic data, based on STAMP output. In the next steps, we will map secondary metabolite genes to closely related species from Papaverace are and analyze the potential for the production of related compounds by rootzone bacteria.

8.1

| Query_ID                           | Subject_ID          | %_Identity | E-value | Bit_Scor | e Gene_Name                                                              |  |  |  |
|------------------------------------|---------------------|------------|---------|----------|--------------------------------------------------------------------------|--|--|--|
| TRINITY_DN1131_c1_g1 JBGUAT0100000 |                     |            |         |          |                                                                          |  |  |  |
| _i7                                | 01.1                | 91.453     | 117     | 10       | Macleaya cordata isolate BLH2017 scaffold1325                            |  |  |  |
| TRINITY_DN1142_c0_g1 JAOXYG0102245 |                     |            |         |          |                                                                          |  |  |  |
| _i3                                | 48.1                | 94.643     | 56      | 3        | Macleaya cordata isolate BLH2017 scaffold9079                            |  |  |  |
| TRINITY_DN147739_c0_JBCEGI01000000 |                     |            |         |          |                                                                          |  |  |  |
| g1_i1                              | 2.1                 | 93.506     | 462     | 30       | Macleaya cordata isolate BLH2017 scaffold209                             |  |  |  |
| TRINITY_DN2929_c0_g1 JBGUAT0100000 |                     |            |         |          |                                                                          |  |  |  |
| _i17                               | 01.1                | 91.655     | 707     | 56       | Macleaya cordata isolate BLH2017 scaffold9101                            |  |  |  |
| TRINITY_DN2929_c0_g1 MVGT01000438. |                     |            |         |          |                                                                          |  |  |  |
| _i3                                | 1                   | 90.634     | 726     | 58       | Macleaya cordata isolate BLH2017 scaffold1837                            |  |  |  |
| TRINITY_DN3028_                    | c0_g1 MVGT01004035  | <b>.</b>   |         |          |                                                                          |  |  |  |
| _i2                                | 1                   | 87.209     | 86      | 11       | Macleaya cordata isolate BLH2017 scaffold1835                            |  |  |  |
| TRINITY_DN3028_0                   | c0_g1 MVGT01004035  | j.         |         |          | Eschscholzia californica subsp. californica DNA, contig: Eca_sc002317.1, |  |  |  |
| _i20                               | 1                   | 87.209     | 86      | 11       | cultivar: Hitoezaki                                                      |  |  |  |
| TRINITY_DN3028_                    | c0_g3 JBCEGI0100000 | D          |         |          | Eschscholzia californica subsp. californica DNA, contig: Eca_sc001010.1, |  |  |  |
| _i1                                | 4.1                 | 92.5       | 40      | 3        | cultivar: Hitoezaki                                                      |  |  |  |
| TRINITY_DN3037_                    | c2_g2 JBLLEJ0100000 | )          |         |          |                                                                          |  |  |  |
| _i1                                | 8.1                 | 92.683     | 41      | 3        | Eschscholzia californica isolate CP2 SCAF_1                              |  |  |  |
| TRINITY_DN310_c                    | 1_g1_ BEHA01000600. |            |         |          |                                                                          |  |  |  |
| i2                                 | 1                   | 85.635     | 181     | 25       | Eschscholzia californica isolate CP2 SCAF_4                              |  |  |  |
| TRINITY_DN315_c                    | 0_g1_ JBGUAT0100000 | )          |         |          |                                                                          |  |  |  |
| i7                                 | 05.1                | 97.917     | 48      | 1        | Eschscholzia californica isolate CP2 SCAF_2                              |  |  |  |
| TRINITY_DN351_c                    | 0_g1_ MVGT01004366  | j.         |         |          |                                                                          |  |  |  |
| i2                                 | 1                   | 96.667     | 60      | 2        | Eschscholzia californica isolate CP2 SCAF_1                              |  |  |  |
| TRINITY_DN6661_c0_g1 MVGT01002051. |                     |            |         |          |                                                                          |  |  |  |
| _i18                               | 1                   | 91.304     | 46      | 4        | Eomecon chionantha isolate PY-2024a chromosome 5                         |  |  |  |
| TRINITY_DN68158_c0_g MVGT01002328. |                     |            |         |          |                                                                          |  |  |  |
| 1_i2                               | 1                   | 95.238     | 84      | 4        | Eomecon chionantha isolate PY-2024a chromosome 1                         |  |  |  |
| TRINITY_DN7528_c1_g1 JBCEGH0100000 |                     |            |         |          |                                                                          |  |  |  |
| _i1                                | 01.1                | 100        | 59      | 0        | Corydalis saxicola isolate ML-2025a linkage group LG08                   |  |  |  |

| Query ID                     | Subject ID         | % Identity  | F-value     | Bit Score           | Gene Name                                                                           |
|------------------------------|--------------------|-------------|-------------|---------------------|-------------------------------------------------------------------------------------|
| TRINITY DN1131 c1 $\sigma$ 1 | XM 02894807        | /o_lucitity | L value     |                     |                                                                                     |
| i7                           | 9 1                | 94 595      | 0.012       | 58.4                | Panaver somniferum clone contig2 cytochrome P450 mRNA_complete cds                  |
| TRINITY DN11/2 $c0 \sigma1$  | XM 02659323        | 51.555      | 0.012       | 50.1                |                                                                                     |
| i3                           | 9 1                | 78 923      | 0           | 1134                | Orlava daucoides clone des649477 anonymous marker DC1340 genomic sequence           |
|                              | 5.1                | 70.525      | U           | 1134                |                                                                                     |
| σ1 i1                        | IN185328 1         | 81 963      | 0           | 1218                | Polygonum minimum voucher Able 5670                                                 |
|                              | XM 04600415        | 01.505      | U           | 1210                |                                                                                     |
| i17                          | A 1                | 91 228      | 1 25F-32    | 156                 | PREDICTED: Nelumbo nucifera caffeovlshikimate esterase-like                         |
|                              | YM 02004058        | 51.220      | 1.252 52    | 150                 |                                                                                     |
| 13                           | 7 2                | 88 462      | 9 35F-2/    | 126                 | PREDICTED: Nelumbo nucifera chorismate synthase, chloroplastic                      |
|                              | VM 05924424        | 00.402      | J.JJL 24    | 120                 |                                                                                     |
| 1 i2                         | 0 1                | 83 516      | 2 12F-11    | 86.1                | PREDICTED: Panaver somniferum internal alternative NAD                              |
|                              |                    | 05.510      | 2.136 11    | 00.1                |                                                                                     |
| 120                          | 0 1                | 8/ 615      | 2 25F-12    | 01.6                | PREDICTED: Panaver somniferum NAD                                                   |
|                              | VNA 05708020       | 04.013      | J.2JL-1J    | 91.0                |                                                                                     |
|                              | XIVI_05798039      | 83 721      | 2 44F-10    | 82.4                | PREDICTED: Panaver somniferum caffeovlshikimate esterase-like                       |
|                              | 3.2<br>XM 02650006 | 03.721      | 2.44L-10    | 02.4                |                                                                                     |
|                              | XIVI_02059000      | 00 200      | 2 465 05    | 264                 | REPICTED: Ranavor compiferum & formulglutathione hydrolase like                     |
|                              | 5.1<br>VM 01025247 | 05.200      | 2.40E-95    | 504                 |                                                                                     |
| IRINITY_DN310_C1_g1_I        | XIVI_01025347      | 06 975      | 0.049       | E 4 7               | DREDICTED: Danaver compiferum glutathiana hydrolaca 2 lika                          |
|                              | 0.2                | 90.075      | 0.046       | 54.7                | PREDICTED. Papaver sommer um giutatmone nyurolase 5-like                            |
| I RINITY_DN315_CU_g1_I       | XIVI_02657109      | 06.20       | 0           | 024                 | DREDICTED: Danaver compiferum chaggy related protein kinace eta like                |
|                              |                    | 00.30       | 0           | 924                 | PREDICTED. Papaver sommer um snaggy-related protein kinase eta-like                 |
| I KINI Y_DN351_CU_g1_I       | XIVI_02655104      | 00.006      | 0           | 011                 | DREDICTED: Brasanis alba tarnana sunthasa 10 lika                                   |
|                              | 2.1                | 69.060      | 0           | 911                 |                                                                                     |
| IRINITY_DN6661_CU_g1         | XIM_02212073       | 00.476      | 0.04        | <b>F</b> 4 <b>7</b> | DREDICTED, Holionthus annuus heavy motal associated isonronylated plant protain 20  |
|                              | 0.2                | 90.476      | 0.04        | 54.7                | PREDICTED: Helianthus annuus neavy metal-associated isoprenyiated plant protein 20  |
| IRINITY_DN68158_C0_g         | KDE 27770 1        | 07 207      | 0.000074    | C2 0                | PREDICTED: Xenia sp. Carnegie-2017 succinate dehydrogenase [ubiquinone] iron-sulfur |
|                              | KR53///U.1         | 97.297      | 1           | 63.9                | subunit, mitochondriai-like                                                         |
| IRINITY_DN/528_c1_g1         | XM_02658417        | 05.00       | 0           | 1422                | DREDICTED. Salvia biogenica ta utenden envir etranoferane related austein 2 like    |
|                              | 9.1                | 85.82       | 0           | 1432                | PREDICIED: Salvia hispanica tryptophan aminotransferase-related protein 3-like      |
| IRINITY_DN8211_c0_g1         |                    | 00 222      | 1 6 4 5 1 0 | 02.4                | PREDICTED: Zeugodacus cucurbitae succinate dehydrogenase [ubiquinone] iron-sulfur   |
|                              | KJ514443.1         | 90.323      | 1.64E-10    | 82.4                | subunit, mitochondriai                                                              |
| TRINITY_DN8211_c0_g1         |                    |             | 4 005 40    |                     |                                                                                     |
| _13                          | KJ514443.1         | 90.323      | 1.88E-10    | 82.4                | PREDICTED: Magnolia sinica hydroquinone glucosyltransferase-like                    |
| IRINITY_DN8875_c0_g1         | XM_02655503        | 04.644      | _           | 700                 |                                                                                     |
|                              | /.1                | 81.641      | 0           | /63                 | PREDICTED: Cryptomeria Japonica UDP-glycosyltransferase 72B1                        |
| TRINITY_DN9198_c0_g1         | XM_01708380        | 00.077      | 0.020       | F 4 -               |                                                                                     |
|                              | 9.4                | 96.875      | 0.039       | 54.7                | Eragrostis tet cultivar Daddi chromosome ZA                                         |
| [TRINITY_DN920_c0_g1_i       | XR_00202295        | 07.050      | 2 4 4 5 4 5 |                     |                                                                                     |
|                              | 8.1                | 87.356      | 3.14E-15    | 99                  | PREDICTED: Drosophila suzukii zeste                                                 |
| TRINITY_DN920_c0_g1_i        | V605444            | 07.007      | 6           | 4005                |                                                                                     |
| 11                           | X60544.1           | 87.097      | 0           | 1225                | C.sempervirens mRNA for chorismate synthase precursor                               |
| [TRINITY_DN920_c0_g1_i       | XR 00202295        |             |             |                     |                                                                                     |

87.356 2.67E-15 99 PREDICTED: Nelumbo nucifera chorismate synthase, chloroplastic

Figure 5 (above) - WGS mapping to closely related Papaveraceae Figure 6 (right) - Corent mappings



Phone: 818-710-4250

Linkedin



NCBI Bio **Project SRA** 

