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Abstract: Deep Learning (DL) algorithms need extensive amounts of data for classification 1

tasks, which can be costly in specialized fields like maritime monitoring. To address 2

data scarcity, we propose a fine-tuning approach leveraging complementary Infrared 3

(IR) and Synthetic Aperture Radar (SAR) datasets. We evaluated our method using the 4

ISDD, HRSID, and FuSAR datasets, employing VGG16 as a shared backbone integrated 5

with Faster R-CNN (for ship detection) and a three-layer classifier (for ship classification). 6

Results showed significant improvements in IR ship detection (mAP: +20%, Recall: +17%) 7

and modest but consistent gains in SAR ship tasks (F1-score: +3%, Recall: +1%, mAP: 8

+1%). Our findings highlight the effectiveness of domain adaptation in improving DL 9

performance under limited data conditions. 10

Keywords: domain adaptation; Ship classification; remote sensing; infrared; SAR 11

1. Introduction 12

Effective maritime surveillance aids environmental sustainability by preventing ille- 13

gal fishing, pollution, and illegal trafficking. Maritime traffic monitoring is particularly 14

challenging due to vast oceanic coverage, with maritime transport responsible for ap- 15

proximately 80% of the world’s trade [1]. To efficiently monitor such extensive areas, 16

satellite-based surveillance using Synthetic Aperture Radar (SAR) and Infrared (IR) imag- 17

ing has proven effective. 18

Classical Machine Learning techniques, when applied to satellite imagery, require 19

extensive manual effort for feature extraction, consuming significant time and resources. 20

Deep Learning (DL) algorithms offer a substantial advantage by automatically identifying 21

and extracting useful features directly from data, significantly reducing manual intervention 22

and improving task-specific outcomes such as classification, detection, and segmentation. 23

However, DL algorithms typically require large datasets to iteratively learn and 24

effectively identify discriminative features. In maritime surveillance, acquiring substantial 25

amounts of SAR and IR data is costly, limiting the potential performance of DL methods. 26

Several researchers have employed DL for maritime tasks, such as ship detection [2–4] and 27

ship classification [5–7], highlighting both the potential and current limitations due to data 28

scarcity. 29

To address data limitations, techniques such as data augmentation, transfer learning, 30

and domain adaptation have been proposed. In this study, we specifically propose a 31

domain adaptation approach using complementary SAR and IR datasets to improve the 32

effectiveness of DL models in maritime traffic monitoring. The main contributions of this 33

work are: 34

Version May 30, 2025 submitted to Proceedings https://doi.org/10.3390/proceedings1010000

https://doi.org/10.3390/proceedings1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0009-0001-4589-4103
https://orcid.org/0000-0002-4872-9541
https://orcid.org/0000-0002-5175-5126
https://orcid.org/0000-0002-4140-6424
https://doi.org/10.3390/proceedings1010000


Version May 30, 2025 submitted to Proceedings 2 of 4

1. Improved IR detection performance, achieving more than a 17% increase in Recall 35

and Mean Average Precision (mAP). 36

2. Enhanced SAR classification performance, achieving a 3% increase in the F1-score 37

compared to the baseline. 38

In the following sections, we briefly discuss the relevant background, outline our 39

methodology, present and analyze our experimental results, and conclude the study. 40

2. Methodology 41

Our methodology comprises two main stages: pretraining and fine-tuning. The 42

complete workflow is illustrated in Figure 1. 43
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Figure 1. Experimental setup illustrating a shared VGG16 backbone for SAR and IR feature extraction.
Models are baseline-trained and fine-tuned using CLS-DET, DET-DET, and DET-CLS pipelines,
evaluated by F1-score (classification), mAP, and Recall (detection).

2.1. Training Pipelines and Models 44

We explored three distinct fine-tuning pipelines: 45

1. Detection-to-Detection (DET-DET): A shared Faster R-CNN with a VGG16 backbone 46

is initially trained on SAR detection data and subsequently fine-tuned on IR detection 47

data, and vice versa. 48

2. Classification-to-Detection (CLS-DET): A VGG16-based classifier is first trained on 49

SAR classification data. Its trained backbone is then integrated into Faster R-CNN 50

and fine-tuned for IR detection tasks. 51

3. Detection-to-Classification (DET-CLS): The Faster R-CNN model with a VGG16 back- 52

bone is initially trained on IR detection data. The backbone is then extracted and 53

fine-tuned for SAR classification tasks using a three-layer classifier. 54

2.2. Datasets 55

We utilized three publicly available datasets for our experiments: 56

1. FuSAR-Ship [8]: A high-resolution SAR ship classification dataset comprising 15 main 57

classes and 98 subclasses, with image dimensions of 512×512. For our experiments, 58

we selected four primary classes: Bulk, Cargo, Tanker, and Fishing. 59

2. HRSID [9]: A high-resolution SAR ship detection dataset containing 16,951 images, 60

each with a resolution of 800 × 800. 61

3. ISDD [10]: An IR ship detection dataset containing 3,061 ship instances, with images 62

sized 500 × 500. 63

2.3. Evaluation and Training Parameters 64

Classification performance was evaluated using the F1-score, while detection perfor- 65

mance was measured by mAP and Recall. All models were trained with a batch size of 32, 66

a learning rate of 1 × 10−4, and optimized using the Adam optimizer. 67
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3. Results 68

We evaluated our method across two experimental setups: (1) Same-task (Detection- 69

to-Detection), and (2) Cross-task (Classification-to-Detection and vice versa). 70

3.1. Same-task Adaptation: Detection-to-Detection (DET-DET) 71

Table 1 shows the results of DET-DET pipeline. For IR detection (ISDD), the Faster 72

R-CNN with the VGG model, when trained and tested exclusively on IR data (baseline), 73

severely underfitted, achieving low Recall (21.73%) and mAP (3.53%). After integrating 74

SAR features (HRSID), substantial improvements were observed, with Recall increasing 75

by approximately 19.3% and mAP by approximately 23.7%. In contrast, using IR data to 76

improve SAR detection resulted in only a modest increase of around 1%, as the models 77

trained and tested solely on SAR data (baseline) were not underfitting. 78

Adaptation Scenario
Recall (%) mAP (%)

Baseline Ours Baseline Ours
SAR→IR (ISDD) 21.73 41 (+19.3) ▲ 3.53 27.26 (+23.7 ▲)
IR→SAR (HRSID) 39.97 40.91 (+1.0) ▲ 32.64 33.52 (+1.0 ▲)

Table 1. Detection-to-detection results; bold indicates target dataset. Improvements (%) shown in
parentheses.

3.2. Cross-task Adaptation: Classification-to-Detection (CLS-DET) and Vice Versa (DET-CLS) 79

Table 2 shows the results for cross-task experiments. For CLS-DET, training the VGG16 80

backbone initially on SAR classification data (FuSAR) and then fine-tuning for IR detection 81

(ISDD) resulted in significant performance gains, with Recall improving by approximately 82

17% and mAP by approximately 20%. Conversely in DET-CLS, when initially training on 83

IR detection data and then fine-tuning for SAR classification, the F1-score increased by 3%, 84

demonstrating beneficial but smaller cross-domain improvements. 85

Training Approach Baseline (%) Ours (%) Metric
SAR Classification → IR Detection (ISDD) 21.73 ↑ 38.95 (+17 ▲) Recall
SAR Classification → IR Detection (ISDD) 3.532 ↑ 23.521 (+20 ▲) mAP
IR Detection → SAR Classification (Fusar) 56.35 ↑ 59.63 (+3 ▲) F1-Score

Table 2. Cross-task results. Bold = target dataset, improvements (%) over baseline = ▲.

4. Discussion 86

We investigated two primary domain adaptation scenarios: same task (Detection- 87

to-Detection) and Cross-task (between classification and detection). Our results clearly 88

illustrate that integrating SAR data significantly enhances IR detection performance. Specif- 89

ically, SAR provided robust features, effectively addressing the underfitting observed in 90

IR-only models, as evidenced by the marked improvements in mAP and Recall metrics. 91

In the Detection-to-Detection scenario, substantial gains in IR performance highlight 92

the advantage of transferring feature representations from SAR to IR. The minimal improve- 93

ment from IR to SAR suggests that SAR datasets inherently contain richer and more diverse 94

features, making them benefit less of complementary/different domain information. 95

Cross-task experiments also showed valuable insights. The transfer of features from 96

SAR classification to IR detection tasks considerably improved IR performance, demonstrat- 97

ing effective feature generalization across tasks. Similarly, utilizing IR detection data for 98

SAR classification, although beneficial, resulted in smaller improvements (approximately 99

3%), reflecting the limited feature complexity in IR data relative to SAR. 100

Overall, our findings emphasize the interoperability and mutual benefit between SAR 101

and IR domains, particularly in scenarios with limited data. Future work will explore 102



Version May 30, 2025 submitted to Proceedings 4 of 4

different DL architectures, additional SAR and IR datasets, and investigate the impact of 103

geographic and temporal similarity of data sources on model performance. 104

5. Conclusions 105

Our experiments demonstrated that integrating SAR data significantly enhances IR 106

ship detection performance, increasing mAP by over 20% and Recall by more than 17%. For 107

SAR-based tasks, the improvements were modest but consistent, with increases of 3%, 1%, 108

and 1% in F1-score, Recall, and mAP, respectively. These findings highlight the complemen- 109

tary relationship between SAR and IR data, confirming that domain adaptation effectively 110

mitigates challenges related to data scarcity. Future research will explore additional SAR 111

and IR datasets from geographically and temporally similar conditions to further validate 112

and refine our approach. Overall, this study contributes towards more robust DL solutions 113

in maritime surveillance applications facing limited data availability. 114
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