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Abstract 15 
In this work, we report simulation-assisted analysis of a room-temperature (300 K) low- 16 
threshold avalanche photodiode (APD) based on a WSe₂ homojunction. Device simula- 17 
tions were conducted using a two-band model and the Chynoweth formalism for impact 18 
ionization, with material parameters extracted for few-layer and multi-layer homojunc- 19 
tion WSe₂ structures. The simulated results accurately reproduce experimental dark and 20 
photocurrent characteristics, with an avalanche threshold voltage of approximately  21 
~1.6 V-over 26 times lower than that of conventional InGaAs APDs. The structure exhibits 22 
ultra-low dark current (10–100 fA) and high sensitivity, enabling detection of optical sig- 23 
nals as low as 7.7 × 10⁴ photons. The analyzed low voltage avalanche photodetector ena- 24 
bles utilization in a wide range of applications. 25 

 26 

Introduction 27 
Avalanche multiplication is an effect in which the carriers gains energy by high-electric 28 
field acceleration to produce a secondary electron-hole pairs [1]. That mechanism requires 29 
the minimum threshold energy (Et) comparable to the material bandgap (Eg) [1-3] to im- 30 
prove the device performance. Typically, photovoltaic efficiency could overcome the 31 
Shockley–Queisser limit, increasing from 34% to 46% [4-6], however, in practical applica- 32 
tions, it is difficult to achieve a threshold energy close to its minimum limit, resulting in 33 
low energy conversion efficiency during the carrier multiplication process. Typically, to 34 
activate impact ionization, the electric-field energy must be 22 times higher than the 35 
bandgap energy [2-7]. This is related to intense electron-phonon (e-p) interactions in typ- 36 
ical bulk materials, resulting in significant energy waste during the carrier acceleration 37 
process what delays impact ionization mechanism. For bulk InGaAs APD, the room-tem- 38 
perature electron mean free path is approximately 140 nm [8-9], while the multiplication 39 
region is usually 1 μm thick [10] what indicates that the carriers exhibit 7× times more 40 
chances of scattering during acceleration process in which energy is transferred to the 41 
lattice and dissipated by phonon emissions. 42 
In this work, we report on numerical simulations of the room-temperature low-threshold 43 
avalanche effect in a WSe2 homojunction. The avalanche threshold voltage is significantly 44 
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reduced to approximately ~1.6 V, which is at least 26 times lower than that of the tradi- 1 
tional InGaAs (42 V) avalanche diode [10]. The device architecture demonstrates a low 2 
background dark current (10-100 fA) within analyzed voltage [11]. The gain within the 3 
range 100-1000 was reached for -2 V depending on the light power conditions.  4 

 5 
Device design 6 
The stepwise van-der-Waals (vdW) junction is characterized by the weak e-p interaction, 7 
which generates fewer phonons in WSe2 as the thickness approaches the monolayer limit. 8 
This is the most important feature for understanding the intrinsic weak e-p interaction 9 
properties of Transition Metal Dichalcogenide (TMD) materials and the enhanced electric 10 
field, both of which should benefit the charge carrier avalanche process. In this work, we 11 
numerically simulated the stepped WSe2 avalanche devices. The stepwise n-WSe2 flake 12 
was mechanically exfoliated onto a SiO2/Si substrate, and the electrical contacts were es- 13 
tablished by depositing Pt/Au electrodes on both sides. The morphological transition be- 14 
tween few-layer and multi-layer WSe2 is atomically abrupt, with thicknesses of 8 mono- 15 
layers (ML)/5.6 nm (energy bandgap, Eg ~ 1.6 eV) and 29 ML/20.3 nm (Eg ~ 1.2 eV), respec- 16 
tively [11]. Figure 1 shows a visualization of the device. 17 

 18 

 19 

Figure 1. Schematic visualization of the device structure comprising a few-layer (8 ML) and multi- 20 
layer (29 ML) with Pt/Au contacts deposited on a SiO₂/Si substrate [11]. 21 

 22 
Simulation results 23 
All simulations were conducted for the device at a temperature of 300 K, with a fixed 24 
series resistance of 50 GΩ (reverse voltage). The material parameters included an electron 25 
affinity of 4.21 eV, corresponding to a 29 ML WSe₂ structure (8 ML – 3.7 eV), and an as- 26 
sumed carrier concentration of 1×10¹⁵ cm⁻³. The WSe2 ML were assumed to be uninten- 27 
tionally n-type doped. Figure 1 presents the results of numerical fitting for dark current.  28 

  29 
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Figure 2. Impact ionization coefficient for the WSe₂ material system (a), dark current fitting for a low- 1 
threshold WSe₂-based avalanche photodiode (b) device resistance versus voltage (c), and assumed 2 
carrier mobilities versus ML number (d). 3 

 4 
The photocurrent in comparison with experimental data for low-threshold APDs based on 5 
the 2D WSe₂ material system calculated for illumination at 520 nm with light powers of 6 
2.52 nW, 9.97 nW and 25.78 nW is presented in Fig 3 (a). The corresponding gain charac- 7 
teristics, derived from the simulation and experimental results, are also shown. The 8 
proper fitting to the experimental results was reached. The gain within the range 100-1000 9 
was reached for -2 V depending on the light power conditions. The simulations employed 10 
a two-band model implemented in the APSYS device solver. Impact ionization was sim- 11 
ulated using Chynoweth’s model, with ionization coefficients adapted from the data de- 12 
picted in Fig. 2(a). The dynamic resistance as a function of bias voltage is illustrated in Fig. 13 
2(c) and was also implemented to fit to the dark/photocurrent experimental curves. 14 

 15 

  
(a) (b) 

Figure 3. Photocurrent fitting under illumination at 520 nm with optical powers of 2.52 nW, 9.97 nW 16 
and 25.78 nW (a) and corresponding gain (b).  17 

Conclusions 18 

The simulation results of the APD with reduced avalanche threshold voltage to the level 19 
of ~1.6 V was presented. The proper fitting to the experimental results to include dark and 20 
photocurrent was reached. Large series resistance ~50 G was extracted. The gain within 21 
the range 100-1000 was reached for -2 V depending on the light power conditions. Simple 22 
two band model was proved to be proper to simulate the 2D material based device per- 23 
formance. 24 
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