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Abstract: Deep learning techniques are increasingly being incorporated into the inspec- 11 

tion and maintenance of social infrastructure. In this study, we show that supervised deep 12 

learning applied to imaging data obtained sub-THz wave, the average recall exceeded 13 

80% for all cover thicknesses of steel plate inside concrete, and more than 90% for rebar 14 

inside concrete with cover thickness up to 20 mm. Unsupervised deep learning enabled 15 

the classification for both steel plate and rebar, even at large cover thickness. These results 16 

are expected to improve the exploration depth, which has been limited in previous studies. 17 
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 19 

1. Introduction 20 

Advanced technologies such as AI and deep learning are starting to be widely uti- 21 

lized in the field of concrete materials [1], which are commonly used as construction ma- 22 

terials. Deep learning can be applied to non-destructive and non-contact inspection for 23 

social infrastructure, for example, and many studies exist [2]. We succeeded in obtaining 24 

locations of steel objects inside concrete by utilizing the high penetration and linear prop- 25 

agation characteristics of sub-THz wave [3], which has electromagnetic waves in the 30- 26 

300 GHz range. Furthermore, employing a sub-THz camera capable of detecting sub-THz 27 

range has made it possible to acquire contour plots through real-time scanning [4]. How- 28 

ever, the applicability of those measurements has limitations, and there is a need to ex- 29 

pand these limitations in order to apply them to actual structures. 30 

This paper proposes a deep learning method to predict the cover thickness of steel 31 

plates and rebar in concrete using sub-THz wave measurements. 32 

2. Outlines of experiments and analysis 33 

2.1 Experimental Procedures 34 

An overview of the specimens is shown in Figure 1(a) and Figure 1(b). The formwork 35 

used for beam specimens of 100 mm height and 400 mm length was used to fabricate 36 

specimens with an embedded steel plate (hereafter referred to as “steel plate specimen”) 37 

and specimens with embedded a rebar (hereafter referred to as “rebar specimen”). The 38 

internal steel plate and rebar were embedded with varying cover thicknesses from the 39 

concrete surface for each specimen. The thickness of the steel plate was 1 mm and the 40 
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diameter of the rebar was 13 mm (deformed rebar). The cover thicknesses were set at 10, 1 

20, 30, and 40 mm. Four steel plate specimens were prepared for each cover thickness, and 2 

two rebar specimens were prepared for each combination of cover thicknesses of 10 and 3 

20 mm, and 30 and 40 mm, respectively. The water-cement ratio of the specimen was 55%. 4 

2.2 Measurement methods 5 

The measurement system using the sub-THz camera is shown in Figure 1(c). A micro- 6 

wave generator was used as the oscillator of the sub-THz wave, which was amplified and 7 

oscillated by a multiplier capable of oscillating from 18 to 52 GHz. In this paper, measure- 8 

ments were performed by continuously varying the frequency range from 30 to 50 GHz 9 

in 1 GHz steps. The sub-THz camera was used as the detector, consisting of 256 elements 10 

(16 × 16) with 1.5 mm spacing in a 2.4 cm square, which is suitable for the sub-THz band. As 11 

a result, a dataset consisted of 1680 data for the measurement with steel plate specimens and 12 

2100 data for the measurement with rebar specimens. The amount of data used for super- 13 

vised and unsupervised learning from this dataset is shown in Table 1. 14 

Figure 1 Specimen for measurement and measurement system. (a) Steel plate specimen (unit: mm). 15 

(b) Rebar specimen (unit: mm). (c) Measurement system with sub-THz camera. 16 

Table 1. Amount of data used for deep learning. 17 

2.3. Structure of deep learning 18 

The structure of deep learning model constructed in this paper by Neural Networks 19 

is shown in Figure 2. Measurement images obtained by the sub-THz camera and the input 20 

frequency value were employed as the input layer for the training data. After combining 21 

them in the input connection layer, the predicted cover thickness (PCT) was obtained by 22 

using Categorical Cross Entropy as the output layer for the error function. In unsuper- 23 

vised deep learning, measurement images obtained from actual cover thickness (ACT) of 24 

40 mm were used as training data, and abnormal index was calculated by squaring the 25 

difference between the input and output data. 26 

Figure 2 The constructed deep learning model. (a) Supervised model. (b) Unsupervised model. 27 
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3. Results and Discussion 1 

3.1. Measurement result from sub-THz wave 2 

Figure 3 shows some of the measurement images in the steel plate specimens and 3 

rebar specimens at 10 GHz intervals with the decoded images, which are discussed on the 4 

clustering results by unsupervised deep learning in the following section 3.2. The dashed 5 

line in the figure indicates the position of the rebar. When the ACT of the steel specimen 6 

is 10 mm, the presence of the steel plate can be confirmed remarkably at 30 GHz. The 7 

reflection intensity is close to zero at 50 GHz. These can be attributed to the fact that the 8 

reflected waves from the concrete surface and the reflected waves from the steel plate 9 

cancel each other out due to interference. For a cover thickness of 20 mm or greater, no 10 

significant difference in reflection intensity was observed. The results of the rebar speci- 11 

mens also show that the rebar inside the specimens could not be confirmed at any of the 12 

ACT. The above results are generally similar to those of previous research [4]. 13 

Figure 3. Images from measurement and unsupervised deep learning by each 10 GHz. (a) Measure- 14 
ment images from steel rebar specimen and decoded image by unsupervised deep learning. (b) 15 
Measurement images from rebar specimen and decoded image by unsupervised deep learning. 16 

3.2. Results from supervised deep learning 17 

Table 2 shows the confusion matrix of the ACT and the PCT of the steel plate speci- 18 

mens and rebar specimens. In the steel plate specimens, it is confirmed that the predictions 19 

are highly accurate for all cover thicknesses, especially for the ACT of 10 mm, 20mm, and 20 

30mm. In the rebar specimens, the recall of the ACT of 10 mm and 20 mm is 96% and 91%, 21 

respectively. These above results suggest the possibility of predicting cover thickness, alt- 22 

hough it was impossible in the previous research [4]. In contrast, the recall for the ACT of 23 

30 mm and 40 mm in the rebar specimens is 40% and 19%, respectively. This can be at- 24 

tributed to the limited availability of measurement images with sufficient reflection inten- 25 

sity for predicting cover thickness, due to differences in reflective surfaces. 26 

Table 2. Confusion matrix showing the amount of data for the ACT and the PCT. 27 

3.3. Results from unsupervised deep learning 28 

Figure 3 shows the decoded images by the model on the steel plate specimen, and 29 

Figure 4(a) also shows some abnormal indexes. In this study, measurement images with 30 
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the ACT of 40 mm were used for training, thus it can be confirmed that the abnormal 1 

indexes for the data with the ACT of 40 mm are quite small. On the other hand, the ab- 2 

normal indexes for data with the ACT of 10 mm are high. From these results, it is con- 3 

firmed that the abnormal indexes decreased as the ACT increased, and it is possible to 4 

identify the cover thickness from abnormal indexes with a small amount of data. Figure 3 5 

shows the decoded images by the model on the rebar specimen, and Figure 4(b) also 6 

shows some abnormal indexes. These abnormal indexes indicate that it is possible to di- 7 

vide the cover thickness into four groups. However, unlike the steel plate specimens, no 8 

trend of abnormal indexes with respect to the change in cover thicknesses could be ob- 9 

served. Thus, it is expected difficult to identify the cover thickness from abnormal indexes. 10 

Figure 4. Clustering results by unsupervised deep learning. (a) Abnormal indexes by steel plate 11 

specimen every 10 GHz. (b) Abnormal indexes by rebar specimen every 10 GHz.  12 

4. Conclusion 13 

In this paper, we propose a deep supervised and unsupervised learning method to 14 

estimate cover thickness using sub-THz wave measurements. The findings are as follows:  15 

1) The cover thickness of steel plates in concrete can be accurately predicted and classi- 16 

fied using both supervised and unsupervised deep learning. 17 

2) Supervised learning accurately predicts rebar in concrete up to a 20 mm cover thick- 18 

ness, but this accuracy declines at 30 mm and 40 mm. 19 

3) Unsupervised deep learning enables clustering of cover thickness of rebar in concrete. 20 
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