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Abstract 1 
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Abstract: Soil moisture is a key parameter in several applications, from land management to 10 
emergency response. Microwave-based soil moisture products are already provided daily, yet at 1 11 
km resolution. Optical remote sensing could be a complementary source of information at higher 12 
spatial resolution (10-100 m), but most studies have been limited to highly homogeneous scenarios. 13 
In this paper, the potential of optical images to assess soil moisture in a highly-fragmented scenario 14 
is investigated. Landsat-8 optical data were processed to retrieve the Visible and Shortwave 15 
Drought Index (VSDI) over an area with heterogeneous land cover. Results were compared with 16 
the Copernicus Soil Water Index (SWI) product, showing a moderate correlation (Pearson coeffi- 17 
cient equal to 0.402) that however increases to 0.668 if only bare soil pixels are selected. 18 
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 21 

1. Introduction 22 
Soil moisture is a key parameter in several application fields, from water supply 23 

management to agriculture, from prevention and mitigation of extreme events like 24 
floods, fires, droughts, to climatological and hydrological studies [1]. 25 

Remote sensing techniques offer considerable advantages for providing information 26 
useful to assess soil moisture content and for monitoring its distribution and temporal 27 
evolution from regional to global scale. Microwave (MW) remote sensing techniques and 28 
methods can be regarded as an already well-established tool to assess soil moisture con- 29 
tent, although in some cases the results can be affected by vegetation cover and soil 30 
roughness [2]. While methods based on microwave remote sensing from satellite have 31 
already achieved a high degree of maturity providing daily soil moisture products at 1 32 
km spatial resolution, optical remote sensing has been proposed as a complementary 33 
source of information at higher spatial resolution (10-100 m) in several studies. The latter, 34 
however, have mainly been conducted in controlled conditions or very specific scenarios 35 
[3]. Thus, the actual capability of optical remote sensing in a complex, highly fragmented 36 
real case scenario is still an open issue. 37 

In this paper, we analyze a multitemporal sequence of Landsat-8 images to compare 38 
the performances of the Visible and Shortwave Infrared Drought Index (VSDI) that in a 39 
previous study [4] resulted to be the most promising among others indexes for soil 40 
moisture evaluation in an agricultural area with heterogeneous land cover. In particular, 41 
here we compare the performance of VSDI with the Soil Water Index (SWI) Copernicus 42 
product [5] that has a higher spatial resolution (1 km) with respect to Global Land Data 43 
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Assimilation System (GLDAS) 2.1 used in [4].  1 

2. Materials and methods 2 
2.1. Study area 3 

The study area (Figure 1a) is an agricultural area, featuring cultivated fields and 4 
also forested patches and it is located in the South-Western Tuscany, near Grosseto, Italy 5 
(Long. 11.2515-11.519 E, Lat. 42.525-42.00 N). It corresponds to an area of about 20 km x 6 
20 km. 7 

 8 

9 
Figure 1. a) Study area. b) Average SWI-002 surface moisture of the study area. 10 

 11 

2.2. Data 12 
The dataset is a multi-temporal sequence of 31 images acquired over the study area 13 

in the summer season (June to September) from 2017 to 2020 by the Operative Land Im- 14 
ager (OLI) sensor. The latter operates on board the Landsat-8 and has a spatial resolution 15 
of 30 m with 9 spectral channels in the visible, near infrared and the Short Wavelength 16 
Infrared (SWIR). The images, have already been preprocessed at L2 level by NASA. All 17 
the images have a cloud coverage lower than 10%.  18 

The validation dataset is constituted by the surface moisture information provided 19 
daily by the Copernicus SWI-002 (Soil Water Index at surface level) product, based on the 20 
MW images acquired by the ASCAT and SAR sensors operating on the METOP and 21 
Sentinel-1 platforms, respectively, as described in [5]. Figure 1b shows the average value 22 
of surface soil moisture evaluated in the study area by the SWI-002 index in corre- 23 
spondence with the Landsat acquisition days during the summer season of 2017-2020.  24 

2.3. Methodology 25 

The images were co-registered with SWI-002 moisture maps and segmented in four 26 
classes (bare soil, vegetation, clouds, cirrus, cloud shadow areas). The images were pro- 27 
cessed with a low-pass filter with an adequate transfer function to simulate an acquisition 28 
with a spatial resolution of 1 km, consistent with SWI-002 Copernicus images. The im- 29 
ages were then masked in order to retain only bare soil and vegetated areas.  30 

 31 

3. Results 32 
The whole dataset – constituted by 31 images - was used to generate surface mois- 33 

ture maps by applying the VSDI algorithm [6]. The whole set of VSDI values was com- 34 
pared to the corresponding whole set of SWI values (pixel by pixel, for each map) and the 35 
correlation of the whole VSDI dataset was evaluated against the whole SWI dataset by 36 
means of the Pearson coefficient. The same procedure was also applied to the three data 37 
subsets: (1) only vegetated pixels, (2) bare soil and poorly vegetated pixels, and (3) only 38 
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bare soil pixels. These subsets were selected by means of suitable Normalized Difference 1 
Vegetation Index (NDVI) threshold values applied to the dataset [7, 8, 9]. 2 

Table 1 reports the Pearson correlation coefficients obtained for the whole dataset 3 
and for the three additional sub-sets containing different proportions of vegetated and of 4 
bare soil pixels. It is apparent that the correlation between the (optical-based) VSDI data 5 
and the (MW-based) SWI data increases considerably when applied to bare soil areas: 6 
Pearson correlation coefficient increases up to 0.668 for the bare soil pixels subset. 7 

 8 

Table 1. Pearson correlation coefficient between SWI and VSDI for the whole dataset and different 9 
data subsets with different number of pixels corresponding to bare soil areas. 10 

 
VSDI VSDI 

NDVI>0.4 
VSDI 

NDVI≤0.4 
VSDI 

NDVI≤0.35 

Dataset whole dataset 
only vegetated 

areas 

bare soil and 
poorly vegetated 

areas 
bare soil 

Pearson coefficient 0.402 0.419 0.630 0.668 
Number of pixels 17305 10379 6866 3250 

 11 
The normalized VSDI values and the SWI values, ranging from 0 to 1 and from 0 to 12 

100 respectively, were divided into 20 classes. Figure 2 shows three-dimensional 13 
SWI-VSDI scatterplots that report the number of pixels (z-axis) of the whole dataset be- 14 
longing to each SWI-VSDI class pair. These scatterplots highlight the lower correlation 15 
for the whole dataset (Figure 2a) compared to the subset with bare soil pixels (Figure 2b) 16 
that has a lower data dispersion. Vegetation effects have further been investigated and 17 
accounted for by assimilating vegetation-related parameters, leading to preliminary re- 18 
sults with an improvement of the Pearson correlation coefficients up to 0.80. 19 
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 20 
Figure 2. 3D scatterplots of SWI-VSDI classes for: (a) whole dataset, and (b) only bare soil pixels. 21 

 22 

4. Conclusions 23 
VSDI values calculated on a multitemporal sequence of Landsat images, acquired in 24 

an agricultural area with heterogeneous land cover, showed a moderate correlation 25 
(Pearson coefficient equal to 0.402) with Copernicus-provided SWI data at a spatial res- 26 
olution of 1 km. The correlation however increased considerably if only bare soil pixels 27 
are selected, reaching a value of 0.668. This demonstrated a considerable effect of vege- 28 
tated areas on the results. In the next steps, the assimilation of vegetation-related pa- 29 
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rameters will be considered to mitigate this effect and improve the correlation between 1 
optical-based and MW-based soil moisture data. 2 
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