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Abstract: Accurate forecasting of solar resource is a key issue for a successful integration of the 
solar power plants into the grid. This paper proposes the fuzzy logic approach as alternative to 
classical statistics, aiming to forecast hourly global solar irradiation. Hourly clearness index, 
defined as the ratio of hourly global solar irradiation at the ground and at the top of the 
atmosphere, is the quantity directly processed by the fuzzy algorithms. It takes into account all 
random meteorological influences, being a measure of the atmospheric transparency. Thus, 
clearness index isolates the stochastic component of the solar irradiation data series. Four new 
autoregressive-fuzzy models are studied in this paper. The models are mainly differentiated by 
the number of the input variables and attributes. The results show that a model which includes 
seasonal terms is the most performant. The model can be applied in sites where measurement of 
hourly global solar irradiation is currently performed, only a re-estimation of the parameters 
being necessary. Overall results demonstrate that the fuzzy models have the strength to translate 
the information enclosed in past measurements into an actual prediction with acceptable 
accuracy. 
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1. Introduction 

The weight of solar electricity in the energy mix experienced an impressive augment in the last 
decade, and this trend is expected to continue. The European photovoltaic (PV) cumulative installed 
capacity has progressed from less than 1 GW in 2003 to over 30 GW in 2010 and 70 GW in 2012. 
Regarding the energy mix, at the end of 2012 PV covers 2.6% of the electricity demand and 5.2% of 
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the peak electricity demand in Europe [1]. To date, there are two challenges standing against the 
growing share of PV systems in the energy mix. The first challenge refers to the price of the electricity 
which is still high in comparison to that of power plants based on fossil fuels. Many efforts are spent 
all over the world to reduce the costs associated to solar electricity production. The second challenge 
stems from the intrinsic nature of solar energy which is stochastic fluctuating in time owing to 
irregular weather pattern. Therefore, in order to reduce the costs of integrating the solar plants in the 
existing power grid, forecasting the energy generated by the solar plants is a key issue. Currently, there 
are several ongoing research projects in Europe, testing different procedures for accurately forecast the 
PV output power. For example, COST Action ES1002 “Weather Intelligence for Renewable Energies" 
has the main objective to improve the forecast of the output power of solar and wind power plants [2].  

There are two methods currently used to perform the forecast: (1) Statistical modeling of the PV 
plant output power time series (e.g.  [3]) and (2) Modeling the output power, using as entries forecasts 
of radiometric quantities (solar irradiance/irradiation) and weather parameters (air temperature, cloud 
cover) (e.g. [4]).  

The accuracy of forecasting the output power of a solar plant is closely related to the accuracy of 
forecasting of solar resource. Depending on the time horizon, different forecasting methods are 
considered [5]. In nowcasting (horizon time less than 3 hours) the forecasts are based on the 
extrapolations of real-time measurements [6-9]. The most popular methods are: Autoregressive 
Integrated Moving Average (ARIMA) and artificial neural network. A concise but outstanding review 
of these methods can be read in [10].   

This paper is focused on the practice of hourly solar irradiation forecasting by using the fuzzy logic 
approach.  

Fuzzy logic has been introduced in 1965 by Lotfy A. Zadeh [11]. Basically it replace the binary 0/1 
logic with a multi-valued logic. Because the fuzzy approach is quite different from classical 
approaches, a short introduction is given in Appendix A. Additional references and examples can be 
found in many books (e.g. [12]). 

Although fuzzy logic has been adopted as a standard method in various applications [13] its use is 
still incipient in modeling solar radiation at the Earth surface. There are several works dealing with the 
estimation of the solar irradiation via fuzzy approach [14-15]. Up to now, only a few attempts related 
to solar resource forecasting were published. In Ref. [16], our group reported a fuzzy model for 
forecasting daily global solar irradiation. Here we report an extension of this study by dropping the 
forecasting time horizon to one hour. Four auto-regressive fuzzy models constructed in an innovative 
manner are proposed and assessed. 

The structure of the paper is as follows. Next section is devoted to the database description. In Sec. 
3 the models construction is illustrated and their prediction accuracy is discussed. The main 
conclusions are gathered in Sec. 4.    

2. Database 

Measurements performed in the Romanian town of Timisoara (45°46′N, 21°25′E) are used in this 
study. Timisoara is placed at 85 m asl on the southeast edge of the Pannonian plain. Timisoara is 
characterized by a warm temperate climate, fully humid (Köppen climate classification Cfb - based on 
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the digital Köppen-Geiger world map on climate classification [17]) with warm summer, typical for 
the Pannonia Basin. 

Global and diffuse solar irradiance recorded on the Solar Platform of the West University of 
Timisoara are used here [18]. Measurements are performed all day long at equal time intervals of 15 
seconds. DeltaOHM LP PYRA 02 first class pyranometers which fully comply with ISO 9060 
standards and meet the requirements defined by the World Meteorological Organization are employed. 
The sensors are integrated into an acquisition data system based on National Instruments PXI.  

Hourly clearness index kt is the quantity directly processed by the proposed fuzzy algorithm. This 
choice is motivated by the fact that kt isolates the stochastic component of the solar irradiation [19]. In 
the present study, time series of hourly kt was derived from solar irradiance measurements following 
the definition: 

Hkt
Hext

≡  (1) 

In Eq. (1) H and extH  denote the hourly global solar irradiation on the ground and at the top of the 

atmosphere, respectively. H was calculated by summing up the 240 solar irradiance measurements in 
every hour while Hext was calculated by integrating the extraterrestrial radiation Gext between sunrise 
and sunset times: 

( )
2

1

12
ext extH G d

ω

ω

ω ω
π

= ∫  (2) 

In Eq. (2) ω is the hour angle and ω1 and ω2 delimit the hour interval. The factor 12/π assigns the 
unit: if Gext is in W/m2, then Hext is in Wh/m2. For a given day, the extraterrestrial radiation was 
calculated as function of the elevation angle h: ( ) ( )sinext SCG G hω ε ω= , where SCG  = 1366.1 W/m2 is 

the solar constant, ε is the eccentricity correction factor that can be calculated with the equation of 
Spencer [20].  

Another quantity used in this study is the relative sunshineσ . It was evaluated following the 
pyranometer method. At first, the sunshine number tξ , a Boolean quantity stating if the sun shining or 

not [21, 22], was calculated using the World Meteorological Organization sunshine criterion [23]. 
According to this, it is considered that the “sun is shining” at time t if direct solar irradiance exceeds 
120 W/m2, i.e.: 

( ) 2
,1 if sin 120 W/m

0 otherwise
t d t

t

G G h
ξ

⎧ − >⎪= ⎨
⎪⎩

 (3) 

where Gt and Gd,t denote the global and diffuse solar irradiance at the moment t and h represents the 
sun’s elevation angle.  

Then, the relative sunshine in a given time interval ∆t was simply computed as the average values 
of tξ  over ∆t: 

( ) ( )t tσ ξ∆ ≡ ∆  (4) 
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The series of hourly relative sunshine was derived from measurements assuming in Eq. (4)  ∆t = 1 
hour. In the following we denote ( )1hourtσ σ≡ ∆ = . 

The database used in this study consists of 17520 values for each variable, kt and σ, corresponding 
to all hourly intervals of 2009 and 2010 (including zero night values). The data from 2009 were used to 
build the models while data from 2010 were used to test the models.  

3. Results and Discussions  

In this section the structure of the fuzzy models is presented in detail and their accuracy is assessed.  

3.1. Models  

Four autoregressive-fuzzy models are studied in this paper. The models are mainly differentiated by 
the number of the input variables and the number of attributes. Model #1 has only one variable at the 
input ktt-1 (measured at time t-1) characterized by 3 attributes. Model #2 extends the number of inputs 
increasing the order of auto-regressive terms to two, ktt-1, ktt-2. Following the findings from [16] the 
variable ktt-1 preserves the three attributes while the variable ktt-2 is characterized by two attributes. The 
model #3 adds to model #1 an exogenous input, namely relative sunshine. The model #4 includes a 
seasonality term, ktt-24 adjacent to ktt-1.  

The models #1, #2 and #3 were applied to the daily series (DS) of hourly kt. This series was 
obtained by the following procedure. First, for each day a sub-series of kt has been prepared. Only 
hourly measurements associated to sun elevation angle greater than 5° were considered. Next, the DS 
series was build by stacking the sub-series prepared for each day in part. Since model #4 includes a 
seasonal term, it was applied to the whole day-night series (DNS) of kt (i.e. including zero night 
values). The results presented in Sec. 3.3 shows that the model #4 is the most accurate. Thus, more 
details on the structure and the operation of this model are presented in the following.  

Figure 1. The membership functions of the variables: (a) ktt-1; (b) ktt-24 and (c) ktt 
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3.2. Seasonal autoregressive fuzzy model 

Model #4 is a seasonal autoregressive fuzzy model with two input variables ktt-1, ktt-24 and one 
output variable ktt. The membership functions are specified in Fig. 1. The geometry of all membership 
functions was choosing triangular and always the peak of a triangle matches with the corresponding 
extremities of the adjacent membership functions. The membership functions of all variables, either in 
or out, reads: 

max 0, if

max 0,1

t v i
t v i

i i
t v

t v i

i i

kt a kt b
b a

m
kt b otherwise
c b

−
−

−

−

⎧ ⎛ ⎞−
<⎪ ⎜ ⎟−⎪ ⎝ ⎠= ⎨

⎛ ⎞−⎪ −⎜ ⎟⎪ −⎝ ⎠⎩

 (5) 

where v = 0, 1 or 24 specify the variable and the index i counts the attributes of a given variable. 
The parameters ai, bi and ci have the meaning as is illustrated in Fig. 1a on the M1 attribute. The 
membership functions of the attributes S24 and H24 are saturated toward zero and infinite, 
respectively. 

Table 1. Matrix of the system rule base of the model #4. 

ktt-1  
S1 M1 H1 

S24 S S M     ktt-24 
H24 M H H 

The mapping of the input to the output of the system, materialized in the rules-base, is listed in 
Table 1, as a matrix. There are 6 rules, each rule being an implication in sense of Eqs. (A3a,b).  

The models #1, #2 and #3 have a similar structure with the model #4.   

3.3. Models performance assessment 

The models performance has been assessed with three statistical indicators: relative root mean 
squared error (rRMSE), relative mean bias error (rMBE) and relative mean absolute error (rMAE), 
defined as follows 

( )2

1 1

N N
estimated measured measured
i i i

i i
rRMSE N kt kt kt

= =

= −∑ ∑  (6) 

( )
1 1

N N
estimated measured measured
i i i

i i
rMBE kt kt kt

= =

= −∑ ∑  (7) 

1 1

N N
estimated measured measured
i i i

i i
rMAE kt kt kt

= =

= −∑ ∑  (8) 

where N is the number of measurements taken into account.  
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Table 2. Statistical indicators of the models accuracy in the fitting period. 

Fitting period Testing period Model 

rMBE rMAE rRMSE  rMBE rMAE rRMSE 
#1  0.023 0.202 0.278  0.029 0.235 0.318 
#2  0.023 0.202 0.278  0.029 0.234 0.318 
#3  0.022 0.202 0.277  0.027 0.234 0.316 
#4  0.013 0.182 0.243  0.033 0.213 0.283 
ARIMA(1,0,1)×(1,0,1)24 -0.021 0.184 0.254 -0.018 0.219 0.295 
Persistence  -0.060 0.221 0.325 -0.048 0.255 0.374 

Fitting period. Table 2 shows the models ability to fit the data. Only forecasts for the daylight time 
were considered. It can be seen that model #4 is the best fit to the data, with an improvement in rRMSE 
over persistence of 25.2%. The persistence model assumes that the conditions at the time of the 
forecast will not change. The ability of the fuzzy model to trace the measured time series is well 
illustrated in Fig. 2, where the measured and the forecasted kt series with model #4 in 10 days (16 to 
25 June 2009) are plotted.  The DNS series was also modeled by a seasonal autoregressive integrated 
moving average sARIMA model (see Appendix B for an introduction), as the first competitor. The 
model ARIMA(1,0,1)×(1,0,1)24 was identified as the best, with rRMSE = 0.254 and rMBE = -0.021. It 
shows that there are no notable differences between the performance of the fuzzy logic model and the 
performance of the sARIMA model. However, a slightly advantage for the fuzzy model can be noted.  

Figure 2. Measured and forecasted clearness index with model #4 in ten days of the fitting 
period (16 to 25 June 2009). 

 

Testing period. All the models were tested against data measured in 2010. This is in line with rather 
common practice that a forecasting model is often developed with data from only one location. Then, 
only the model parameters are re-estimated when it is applied to another location. 

The models performance in the testing period is also presented in Table 2. Again, model #4 
registered the best performance with rRMSE = 0.283. This is a reasonable value taking into account 
that the statistical indicators were calculated over the entire year. The improvement in rRMSE over 
persistence is of 24.3%. A smaller improvement in rRMSE of only 4% is found compared to sARIMA 
model. 

The ultimate goal of this work is the forecasting of hourly solar irradiation. Reikard [7] reported a 
comparison of different models (including ARIMA, UCM - unobserved components model, NN – 
neural networks and hybrid models) for forecasting mean hourly solar irradiance at different horizons 
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of time, against data measured at six stations. The results were assessed in terms of mean absolute 

percentage errors (
1

1 N
estimated measured measured
i i i

i
MAPE kt kt kt

N =

≡ −∑ ). For one hour forecast horizon, MAPE 

reported in [7] falls between 19.6% and 75.4%. Comparing the forecasted solar irradiation time series 
generated by the model #4 with measurements we found MAPE = 29.4% in the fitting period and 
MAPE = 37.0% in the testing period. Therefore, our results are in good agreement with the results 
from [7].  

Table 3. Statistical indicators of accuracy of the model #4 in each month of the year 2010. 

Clearness index Solar irradiation 
Month 

rMBE rMAE rRMSE rMBE rMAE rRMSE 
January   0.089 0.2461 0.334   0.062 0.230 0.324 
February   0.071 0.2357 0.304   0.069 0.227 0.296 

March   0.007 0.2234 0.292 -0.001 0.212 0.291 
April   0.011 0.2114 0.285 -0.010 0.202 0.313 
May   0.058 0.2488 0.334   0.034 0.229 0.337 
June   0.025 0.1963 0.257   0.010 0.170 0.244 
July   0.036 0.1874 0.244   0.015 0.161 0.233 

August -0.009 0.1613 0.212 -0.019 0.141 0.196 
September  0.022 0.2042 0.270   0.007 0.189 0.267 

October -0.009 0.255 0.334   0.002 0.253 0.368 
November   0.094 0.2119 0.278   0.058 0.177 0.240 
December   0.189 0.3228 0.424   0.175 0.311 0.416 

When the fuzzy models were tested monthly, the models accuracy was better in summer months 
than in winter months. As example, monthly statistical indicators of accuracy for model #4 are 
presented in Table 3. It can be seen that rRMSE decreases from 32.4% in January to 19.6% in August 
and increases again to 41.6% in December, which indicates a seasonal dependence of the model 
accuracy. This is in accord with the results reported in Ref. [9], which demonstrated that the accuracy 
of the autoregressive models for sunshine number is primarily linked to the stability of the state of the 
sky, which, however, depends on the season.  

4. Conclusions  

In this paper four auto-regressive fuzzy models for forecasting hourly global solar irradiation are 
assessed. Being a measure of the stochastic component of solar irradiation, the hourly clearness index 
is the effective forecasted quantity. A seasonal fuzzy model which includes two auto-regressive terms 
of order 1 and 24 was found as the most performing. The proposed model exploits a very simple rules-
base matrix. Since the data series used to build the model can be considered coming from an arbitrary 
environment, the procedure is general and it can be applied in any place where hourly global solar 
irradiation is currently measured, only a re-estimation of the parameters being necessary. The detailed 
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presentation of the model is intended to help the potential users to devise an appropriate fuzzy model 
for their own requirements. 

The comparison with the traditional ARIMA model shows that the fuzzy logic approach is a 
competitive alternative for accurate forecasting short-term solar irradiation. Allowing intermediate 
values between the two binary options 0 and 1, the fuzzy sets theory can provide mathematics with the 
ability to capture uncertainties associated with natural phenomena. Thus, fuzzy logic may be regarded 
as an extension of the binary logic, which is successful in many applications, like computer science, 
but may lack the flexibility needed in other applications, like solar irradiation forecasting. 

Further efforts will be devoted to the integration of some meteorological parameters in the fuzzy 
algorithm (related to the state of the sky, atmospheric pressure), aiming to increase the model 
accuracy.  

 

Appendix  

A. Fuzzy logic 

The basis of Zadeh’s logic theory is the fuzzy set concept, which is defined as follows. If X is a 
collection of objects, the associated fuzzy set A is defined as: 

( ){ }, ( ) :AA x m x x X≡ ∈  (A1) 

where mA(x) is the membership function showing the degree of affiliation of the element x to the fuzzy 
set A. A physical variable is named linguistic variable and its values are linguistic values, called 
attributes, expressed by words. The membership function indicates the level of confidence with which 
an attribute characterizes a certain element x X∈ . The number of attributes of a linguistic variable and 
the shape of the membership functions depend on the application, being specified in a heuristic way.  

In fuzzy sets theory, these operations are defined through the membership functions, e.g.: 

( )Intersection: min ( ) , ( ) ,A B A Bm m x m x x X∩ = ∀ ∈  (A2a) 

( )Reunion: max ( ) , ( ) ,A B A Bm m x m x x X∪ = ∀ ∈  (A2b) 

Generally, a fuzzy logic model is a functional relation between two multidimensional spaces. The 
associative rules between different input and output fuzzy sets are expressed in the form:  

IF ( ) THEN ( )premises conclusions  (A3a) 

Every premise or conclusion consists of an expression like: 
( ) IS ( )variable attribute  (A3b) 

Thus, the information is carried out from the input to the output of a fuzzy model in three steps:  
(1) Fuzzification. A coding process in which each numerical input of a linguistic variable is 

changed into the membership function values of its attributes.  
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(2) Inference. A process consisting of two steps: (i) The computation of the degree in which a 
rule is fulfilled by the intersection of individual premises (Eq. A2a). (ii) Sometimes some rules 
drive to the same attribute of an output linguistic variable. For finding the confidence level of this 
conclusion, the individual degrees of fulfilling the rules driving to this conclusion are joined (Eq. 
A2b).  

(3) Defuzzification. It is a decoding operation of the conclusion resulted from the inference 
process, on the purpose of providing the output crisp value. There are many defuzzification 
methods (see e.g. [12]); in this work, the following equation was applied: 

( ) ( )
i icrisp i y y

i i
y c m x dx m x dx=∑ ∑∫ ∫  (A4) 

where ci is value of the variable x where myi(x) reaches its peak and the integral ( )
iym x dx∫  

represents the area delimited by myi(x).  

B. Seasonal ARIMA models 

A seasonal ARIMA model ARIMA(p,d,q)×(P,D,Q)s  includes the following elements:  (1) ( )AR p  
autoregressive part of order p;  (2) ( )MA q  moving average part of order q; (3) ( )I d  non-seasonal 

differencing of order d; (4) ( )sAR P seasonal autoregressive part of order P; (5) ( )sMA Q  seasonal 

moving average term of order Q;  (6) ( )sI D  seasonal differencing of order D. s is the period of 

seasonal pattern (in this case s = 24 hours). The general equation of ARIMA(p,d,q)×(P,D,Q)s model is: 

( )( ) ( ) ( )

( )( )

2 2
1 2 1 2

( )( ) ( ) ( )

2 2
1 2 1 2

( ) ( )

1 ... 1 ... 1 1

1 ... 1 ...
s

s

Ddp s s Ps s
p p t

I dAR p AR P I D

q s s Qs
q Q t

MA q MA Q

B B B B B B B B z c

B B B B B B

φ φ φ β β φ

θ θ θ ψ ψ ψ ε

− − − − − − − − − − = +

+ − − − − − − − −
 (B1) 

where  B  is the backshift operator: 

1t tBz z −=  (B2) 

and tε  is the estimated shock at time t (white noise). 

The statistical software Statgraphics was used to fit an ARIMA(p,d,q)×(P,D,Q)s model on the DNS 
data series. The model ARIMA(1,0,1)×(1,0,1)24.was selected;  The model equation is: 

1 1 1 24 1 1 25 1 1 1 24 1 1 25ˆt t t t t t t tz z z zφ β β φ θ ε ψ ε ψ θ ε ε− − − − − −= + − − − + +  (B3) 

More details on the sARIMA models can be found in e.g. Ch. 6 from [24].  
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