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Non- Destructive Testing and Evaluation (NDT & E) plays a vital role in inspection 17 

of wide varieties of materials without influencing its future serviceability. Among the 18 

widely used NDT&E techniques Ultrasonic Testing, Radiographic Testing, Eddy Current 19 

Testing, Magnetic Particle Inspection, InfraRed Thermography gained its importance due 20 

to its inherent merits. However, NDT & E demands a safe, remote, fast, quantitative in- 21 

spection approach which can easily deployed for on-field inspection services.  22 

Infrared Thermography involves mapping of the thermal profile over the object 23 

under inspection to reveal its surface and sub-surface features [1]. This can be imple- 24 

mented either in a passive or in an active approach. Even though passive approach has 25 

several merits such as simple, fast, and easy to deploy in field inspection, it has a major 26 

limitation in providing a quantitative information regarding the sub-surface features of 27 

smaller spatial dimensions specially located deep inside the test object. Identify to these 28 

types of smaller and deeper sub-surface features along with their quantitative details 29 

with enough detection sensitivity active thermography is preferred. In this former ap- 30 

proach an active thermal stimulus is imposed on to the test object to probe the thermal 31 

waves with a predefined amplitude and the bandwidth. Due to its predefined imposed 32 

thermal response, obtaining the reliable quantitative information about the sub-surface 33 

features is possible.  34 

Among the widely used active thermographic approaches pulse- based thermo- 35 

graphic methods and the modulated thermographic approaches are more prominent. 36 

Due to limitations like shallow probing depth, the need for high peak power in 37 

pulse-based methods, and the repetitive testing required at different frequencies in 38 

lock-in thermography, these techniques are less suitable for applications that require 39 

continuous depth scanning using low to medium peak power sources within a moderate 40 

experimentation time. These limitations can be overcome by adopting the recently pro- 41 

posed Frequency Modulated Thermal Wave Imaging (FMTWI) approaches with pulse 42 

compression favorable correlation based matched filter post-processing [2].  43 

This present work highlights the capabilities of FMTWI technique with correlation 44 

based post-processing approach for NDT&E of various materials such as steel and 45 
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sandwich materials for inspection to identify the sub-surface anomalies/ interface bond 1 

quality. The obtained results from various post-processing approaches such as Frequency 2 

Domain Phase (FDP), Time Domain Phase (TDP), Cross Correlation Coefficient (CCC) 3 

have been considered based on their superiority while detecting the sub-surface defects 4 

[3]. 5 

Metal and sandwich materials are used in the experimental investigation which are 6 

commonly utilized in shipbuilding, automotive and aerospace industries [4-6]. 7 

Experiments have been carried out and thermal data has been acquired during the 8 

experimentation for Pulse, Lock-in, Frequency modulated Thermal wave imaging and 9 

other coded excitation schemes using the active thermal imaging system developed by 10 

InfraRed Vision and Automation Pvt. Ltd., Rupnagar, Punjab, India, along with 11 

state-of-the-art associated post-processing software. Two high-intensity (each 1200 W) 12 

Light Emitting Diode (LED) lamps used to impose with predefined incident heat flux 13 

over the sample under examination. The sample was placed 1 meter away from the 14 

lamps to ensure uniform heating across the surface. Lamp intensity was modulated via a 15 

source control unit for the specific adopted excitation scheme. 16 

 17 

Figure 1. Obtained thermographic images from the (a) cross-correlation coefficient and (b) time 18 
domain phase-based post processing analysis schemes using FMTWI. 19 

    20 

  21 

 22 

 23 

 24 

Figure 2. (a) Top and (b) cross-sectional view of the honeycomb test specimen used in experimen- 25 
tation (c) Experimental set up used for carrying out the PT, LT and FMTWI. 26 

(a) 
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Figure 3. Obtained thermographic image from the cross-correlation coefficient post processing 2 
analysis schemes using FMTWI. 3 

 4 

Figure 4. Obtained stack of thermographic image sequence from the cross-correlation coefficient 5 
post processing analysis schemes using FMTWI and its single pixel profile at delamination and 6 
sound region of the test specimen. 7 

Thermal response was captured using a FLIR A655sc uncooled infrared camera, of- 8 

fering a spatial resolution of 640 × 480 pixels and operating within a spectral range of 9 

8 µm to 12 µm in the far-infrared region. The camera monitors the surface temperature 10 

variations across the sample and acquired the thermal response at a rate of 25 frames per 11 

second (fps), providing detailed temporal and spatial thermal data for post-analysis. 12 

Post-analysis on the obtained thermographic sequences for the selected excitation 13 

schemes was carried out using both conventional frequency domain and advanced time 14 

domain approaches, such as cross-correlation coefficient and time-domain phase analysis, 15 

across various test samples. Figure 1 shows the interface bond quality of the met- 16 

al-insulator and insulator-insulator interface whereas Figure 2 shows the experimental 17 

sample and arrangement used for experimentation for testing of the honeycomb speci- 18 

men. Figure 3 shows the interface quality for the honeycomb sandwich structure, 19 

whereas Figure 4 shows the stack of the correlation coefficient image sequence. It is clear 20 
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from all the obtained results for the metal and honeycomb sandwich structures that the 1 

obtained CCC post processing with FMTWI shows the better sub-surface defect detection 2 

capabilities while identifying the interface delamination [4]. Further, efforts were made to 3 

compare various experimental techniques and the proposed post-processing approaches 4 

both qualitatively and quantitatively. 5 
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