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Abstract: In the field of Raman spectroscopy (RS), particularly when working with biologi- 1

cal samples, identifying the chemical compounds most involved in specific pathologies is of 2

critical importance for pathologists. The correlation between chemical substances present 3

in biological tissue and pathology can contribute not only to a deeper understanding of the 4

disease itself but also to the development of novel artificial intelligence-based diagnostic 5

methodologies. Motivated by these clinical challenges, we propose a method to identify the 6

most discriminative spectral bands by leveraging the synergy between Topological Machine 7

Learning (TML) and Raman Spectroscopy. The intrinsic explainability of part of the TML 8

pipeline can indeed play a key role in the detection of such spectral bands, e.g. the proteins 9

most associated with the disease. In order to evaluate the performance of our method, 10

we apply it to three case studies: the RS of biological tissue related to the chondrogenic 11

bone tumors, the RS of cerebrospinal fluid associated with Alzheimer’s disease and the RS 12

of pancreatic tissue. The results obtained with our method are promising in pinpointing 13

which spectral bands are most relevant for diagnosis, but they also highlight the need for 14

further investigation. 15

Keywords: Raman, Machine Learning, Topological Data Analysis, Explainable Artificial 16

Intelligence 17

1. Introduction 18

Raman spectroscopy (RS) is a spectroscopic technique used to provide a structural 19

fingerprint of a sample. It is based on the evaluation of the inelastic scattering process in 20

which photons incident on the sample transfer energy to or from molecular vibrational 21

modes. Since the involved energies are relatively low, RS is applicable for non-destructive 22

analysis; hence, it is compatible with in vivo or in vitro, making it suitable for many 23

applications in the biological realm [1–4]. 24

In a nutshell, different bands of the Raman spectra represent specific molecular move- 25

ments and rotational states, providing an insight into molecular behaviour and composition; 26

on the other hand, despite the chemical coherence of RS, when imaging biological samples, 27

the sources of information are always multiple, and the most prominent ones may be 28

hidden or obscured by other spurious signals. 29

Therefore, advanced data filtering and processing methods have been used to achieve 30

a fast and robust interpretation of the spectra in various application fields, as well as 31

machine learning methods to better understand RS and extract meaningful features from 32

them. In this perspective, we propose to increase the interpretability of the models of 33

Topological Machine Learning (TML, [5]) trained on three specific case studies through a 34

band importance analysis for data of RS. 35
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2. Materials and Methods 36

A framework inspired by RISE [6], which is a post hoc AI interpretability method, 37

has been developed to identify the most discriminative spectral bands in Raman spec- 38

troscopy data. Our approach empirically evaluates spectral band importance through the 39

quantitative assessment of their contribution to model performance: 40

• Input: Raman spectra of biological samples; 41

• Preprocessing and feature extraction: Same as original model (when applicable); 42

• Sliding window masking: Iterative masking with 10-width window and 5 stride to 43

identify critical spectral regions; 44

• Importance estimation: Performance drop on masked spectra indicates diagnostically 45

relevant regions. 46

Figure 1 sketches the framework overview. We used a Topological Machine Learning 47

pipeline introduced in [5], and successfully applied in Raman spectroscopy [7,8], leveraging 48

its input dimensionality invariance. 49

Figure 1. Identifying critical spectral regions in Raman data via sliding band masking, with band
width of 10 cm−1 and stride of 5 cm−1. First row: classical ML pipeline for RS. Second row: masked
regions causing model performance drops reveal diagnostically relevant bands.

3. Results 50

We present the discriminative spectral band identification for our three case stud- 51

ies: the Alzheimer’s disease detection in Figure 2, the chondrogenic cancer grading in 52

Figure 3, and the pancreatic ductal adenocarcinoma (PDA) classification in Figure 4. For 53

chondrogenic and pancreatic cases, we show critical regions for both binary and multi- 54

label classification. Notably, the binary classification’s critical regions remain important 55

in multi-label scenarios (colored accordingly), demonstrating model consistency. In these 56

figures, the results are plotted combining: 57

• A representative Raman spectrum (intensity a.u. vs. wavenumber cm−1); 58

• Performance drop curve (accuracy loss percentage vs. wavenumber cm−1). 59

This dual representation links spectral features to diagnostic importance, potentially 60

identifying relevant biomolecules. For each experiment, we set an arbitrary threshold 61

marking significant performance degradation. 62

• Alzheimer’s: Performance drop threshold: 30%. Key regions: 904-956 cm−1, 1146-1198 63

cm−1, and 1224-1313 cm−1 peaks. 64

• Chondrogenic: Performance drop threshold: 3%. Primary peak: 997-1016 cm−1. For 65

4-class: additional peaks at 725-748 cm−1, 997-1072 cm−1, and 1384-1394 cm−1. 66

• PDA: Performance drop threshold: 30% (3-class) and 45% (binary)s. Key features: 67

1250-1302 cm−1 peak and 958-973 cm−1 valley. 68
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Minor graphical adjustments were made for better visualization. 69
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Figure 2. Discriminative spectral bands for Alzheimer’s detection (904-956, 1146-1198, and 1224-1313
cm−1) showing >30% performance drop when masked. Important bands are colored in red.
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Figure 3. Critical Raman peaks for chondrogenic cancer detection (997-1016 cm−1 in binary classifica-
tion, extending to 725-748 and 1384-1394 cm−1 for multi-class) showing >3% performance drop when
masked. Overlapping important regions are shown in binary classification colors.
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Figure 4. Diagnostically relevant spectral features for pancreatic adenocarcinoma classification
(1250-1302 cm−1 peak and 958-973 cm−1 valley) showing >30% (multi-class) and >45% (binary)
performance drop when masked.
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4. Conclusions 70

This preliminary study presents an AI framework for Raman spectroscopy-based 71

disease detection, able to enhance the explainability of the classification model, assessing the 72

band importance of RS for each case study. Unlike conventional peak analysis, our approach 73

reveals that diagnostic information may be distributed across broad spectral regions rather 74

than isolated peaks, suggesting complex biomolecular interactions underlying disease 75

signatures. The consistent identification of important spectral features across different 76

classification tasks demonstrates the robustness of the method.These findings highlight the 77

potential of combining topological data analysis with explainability techniques to bridge 78

the gap between machine learning predictions and clinical interpretability in spectroscopic 79

diagnostics. While promising, further validation is needed to establish the clinical relevance 80

of the identified spectral patterns. 81
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