

Evaluation of radioactivity in chanterelle (Cantharellus cibarius) and health implications

Karolina Szymańska¹, Dagmara Strumińska-Parulska¹, Aleksandra Moniakowska¹, Jerzy Falandysz²

The contamination, accumulation, spatial distribution, and potential health risk of ¹³⁷Cs, ²¹⁰Po, ²¹⁰Pb, and ⁴⁰K in chanterelles collected across Poland were examined using validated methodology and gamma-ray and alpha-particle spectrometric measurements. The values of anthropogenic ¹³⁷Cs activity concentration in mushrooms were between 118 and 1647 Bq·kg⁻¹ dry weight (dw), while for natural ⁴⁰K from 1316 to 1895 Bq·kg⁻¹ dw. The activity concentrations of ²¹⁰Po in chanterelles were between 2.23 and 8.57 Bq·kg⁻¹ dw and in forest topsoil between 11.4 and 83.0 Bq·kg⁻¹ dw. Corresponding values for ²¹⁰Pb were 1.50-6.14 and 7.74-46.1 Bq·kg⁻¹ dw, respectively. An assessment of the annual radiation doses and cancer risk related to ¹³⁷Cs, ⁴⁰K, ²¹⁰Po and ²¹⁰Pb consumed with chanterelle showed that ¹³⁷Cs and ²¹⁰Po give a similar risk, but 2-3 orders of magnitude higher than ⁴⁰K and ²¹⁰Pb.

The results for ¹³⁷Cs, ⁴⁰K, ²¹⁰Po, and ²¹⁰Pb activity concentrations of golden chanterelles and ²¹⁰Po and ²¹⁰Pb in topsoil substrate are presented in Fig. 1. The obtained results varied significantly – the highest values of activity concentrations were determined for ⁴⁰K, while the lowest were for ²¹⁰Po and ²¹⁰Pb. ¹³⁷Cs is an anthropogenic contaminant present in the environment as a result of global atmospheric fallout. ⁴⁰K is a naturally occurring potassium radioactive isotope, and mycelia easily absorb monovalent biologically essential ions such as K* from the soil. The accumulation of ⁴⁰K is related to the potassium essential biological function in mushrooms. The highest values of ⁴⁰K activity concentrations were observed in chanterelles collected in the mountain area, namely Zakopane (1895 ± 79 Bq·kg⁻¹ dw), while the lowest was measured in samples from north-eastern Poland, the Augustów Forest (1316 ± 40 Bq·kg⁻¹ dw) (Fig. 2). The highest ²¹⁰Po and ²¹⁰Pb activity concentrations were observed in chanterelles from Włoszczowa (8.57 ± 0.50 and 6.14 ± 0.40 Bq·kg⁻¹ dw, respectively) (Fig. 3 and 4). In contrast, the lowest concentrations of analyzed radionuclides were measured in samples from Porażyn (2.23 ± 0.12 Bq·kg⁻¹ dw for ²¹⁰Po) and Włocławek (1.50 ± 0.11 Bq·kg⁻¹ dw for ²¹⁰Pb). The highest activity concentrations determined in forest topsoil were at Borucino, reaching 83.0 ± 3.8 Bq·kg⁻¹ dw for ²¹⁰Po) and Dziemiany (7.74 ± 0.40 Bq·kg⁻¹ dw for ²¹⁰Pb). The lowest levels were recorded in forest topsoil from Tuszynki (11.4 ± 0.9 Bq·kg⁻¹ dw for ²¹⁰Po) and Dziemiany (7.74 ± 0.40 Bq·kg⁻¹ dw for ²¹⁰Pb). The highest ¹³⁷Cs activity concentrations were observed in chanterelles from Ciechocinek (1647 ± 12 Bq·kg⁻¹ dw) and the lowest were measured in samples from Tuszynki (11.8 ± 2 Bq·kg⁻¹ dw) (Fig. 5). The content in fruit bodies in the research strictly depended on the sampling location radioactive pollution. Studies have shown that lamellae mushrooms such

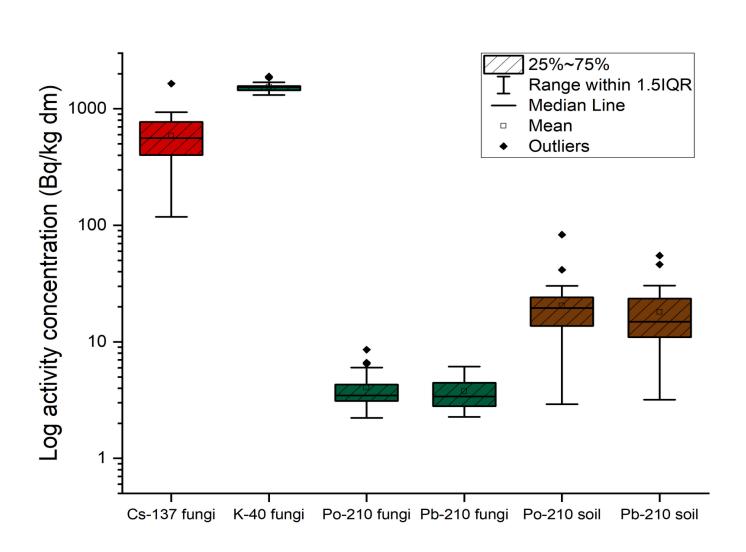


Fig. 1. Log activity concentrations of ¹³⁷Cs, ⁴⁰K, ²¹⁰Po, ²¹⁰Pb in analyzed mushroom and topsoil

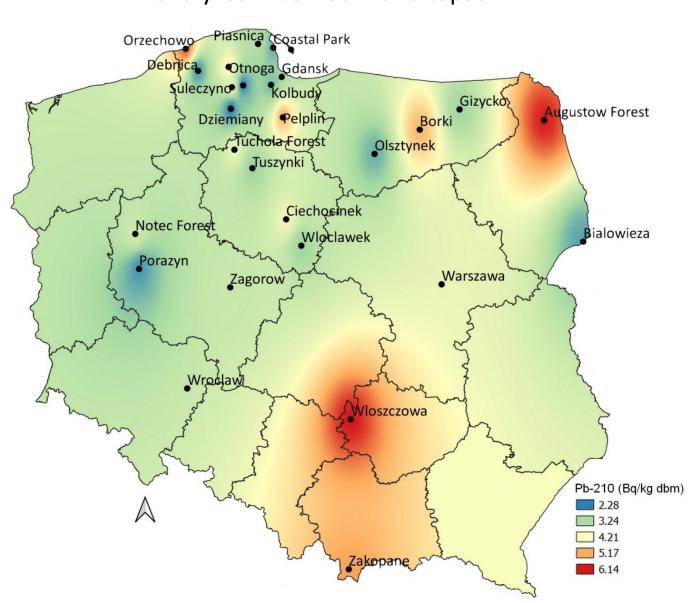


Fig. 4. Interpolation map for ²¹⁰Pb activity concentrations in chanterelle

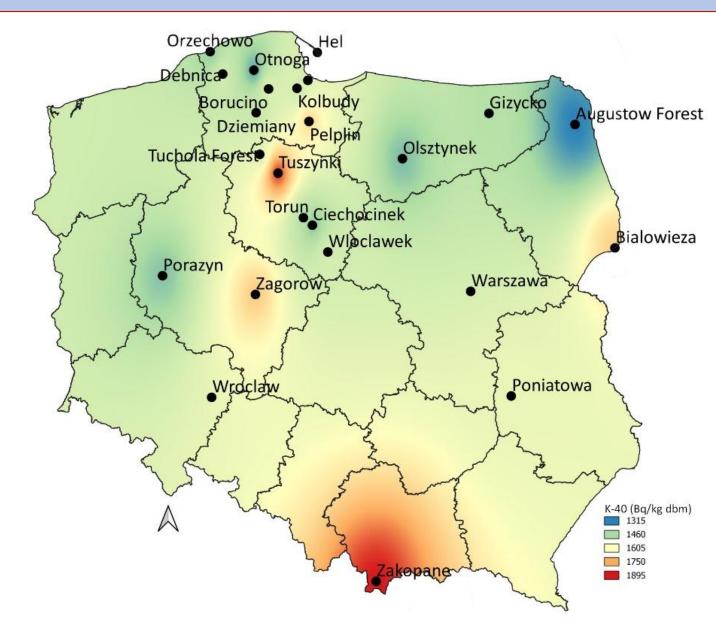


Fig. 2. Interpolation map for ⁴⁰K activity concentrations in chanterelle

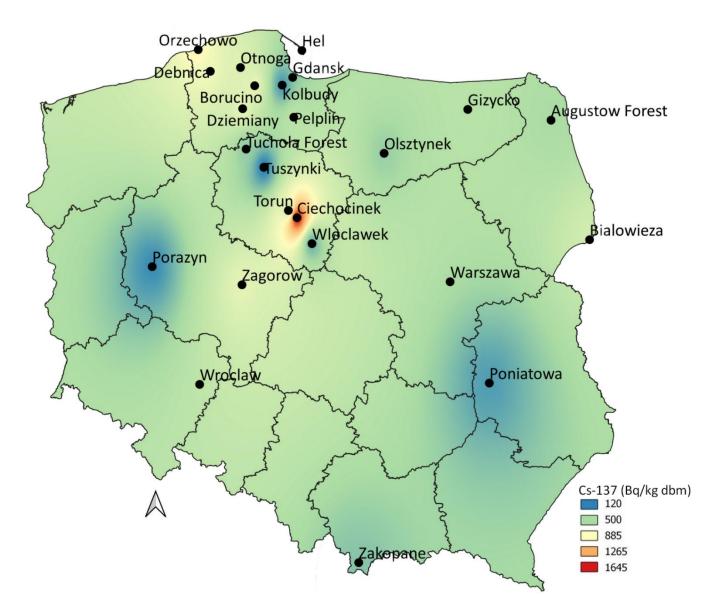


Fig. 5. Interpolation map for ¹³⁷Cs activity concentrations in chanterelle

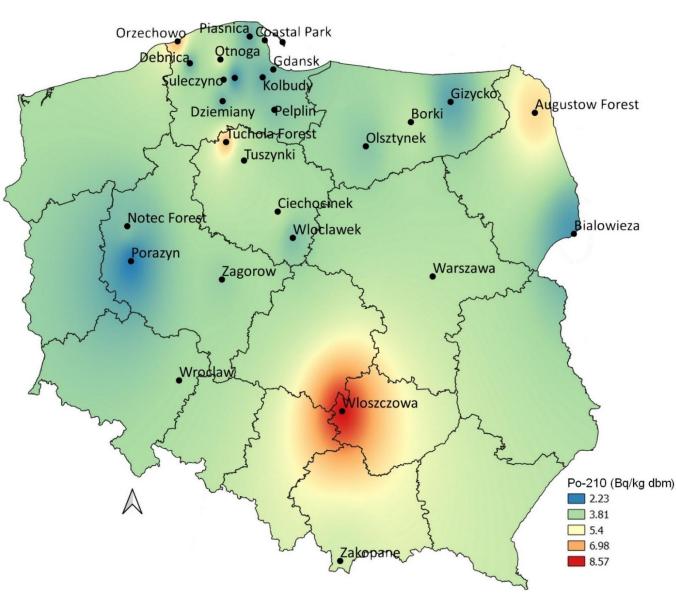


Fig. 3. Interpolation map for ²¹⁰Po activity concentrations in chanterelle

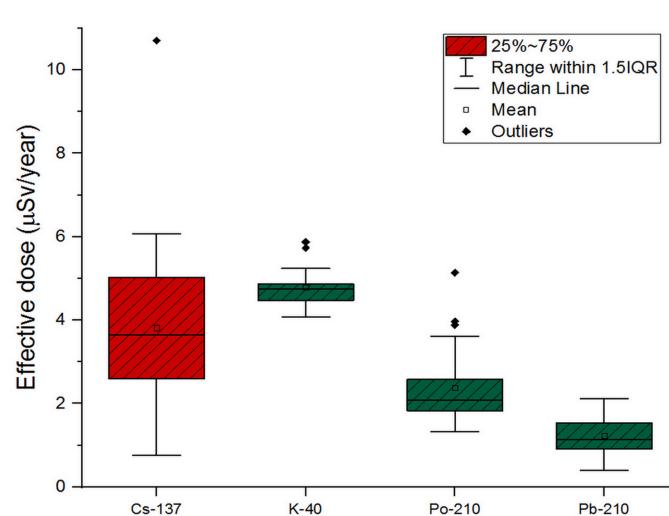


Fig. 6. Annual effective dose from ¹³⁷Cs, ⁴⁰K, ²¹⁰Po, ²¹⁰Pb ingested with analyzed mushrooms

The annual effective doses were calculated to assess the potential radiotoxicity of the chanterelles based on previously determined 137 Cs, 40 K, 210 Po and 210 Pb activity concentrations. Based on the determined 210 Po and 210 Pb activity concentrations, the typical meal containing 100 g of fresh chanterelles would provide 1.18-16.5 Bq of 137 Cs, 13.2-18.9 Bq of 40 K, 0.022-0.086 Bq of 210 Po and 0.011-0.061 Bq of 210 Pb and give 132-477 nSv in total. An average mushroom consumer in Poland ingests about 5 kg of fresh mushrooms annually, wild-growing and cultivated. Assuming the consumer uses only golden chanterelle, the ingestion may result in an annual effective dose of 0.77-10.7 μ Sv from 137 Cs, 4.08-5.87 μ Sv from 40 K, 1.34 to 5.14 μ Sv from 210 Po decay and 0.78 to 2.12 μ Sv from 210 Pb; thus 6.97-23.4 μ Sv year $^{-1}$ altogether (Fig. 6).

