

The 3rd International Online **Conference on Toxins**

Identifying small molecule and peptide inhibitors against ricin and Shiga toxin

Dr. Arkajyoti Dutta, Dr. Nilgun E. Tumer Assistant Professor, Vellore Institute of Technology **Distinguished Professor, Rutgers University**

INTRODUCTION & AIM

- lubricant production More than 5% of total pro
- Category B biothreat agent, anticancer •There are no antidotes or vaccines

es: 90 (15 new)

- Shiga toxin 1 and 2 (Stx1 and Stx2) are produced by E. coli (STEC), which causes food poisoning and is a public
- Shiga toxin is also produced by Shigella dysenteriae

- At least 35 people were confirmed sick in an E. coli (STEC) outbreak linked to the San Diego restaurant around November 2023.
- There are no FDA-approved vaccines or therapeutics against STEC

RESULTS & DISCUSSION

Comparative study of binding affinities using FA and SPR

Peptide	Peptide Sequence	K _i (μM) using F <i>i</i> assay ^a		K _D (μM) using SPR assay		IC ₅₀ (μM) using qRT-PCR ^d	
		RTA	Stx2A1	RTAb	Stx2A1°	RTA	Stx2A1
P3	LFD	85.6 ± 8	>1000	> 10 mM	>1 M	U.D *	U.D.
P4	GLFD	41.6 ± 7	>1000	451 ± 17	> 2 mM	102 ± 45	U.D.
P5	FGLFD	46.5 ± 7	14.9 ± 2	497 ± 30	125 ± 27	121 ± 44	U.D.
P6	GFGLFD	28.0 ± 7	9.6 ± 1	399 ± 20	71 ± 13	63 ± 13	U.D.
P7	MGFGLFD	20.6 ± 2	6.0 ± 0.4	294 ± 47	66 ± 3	34 ± 10	60 ± 6
P8	DMGFGLFD	6.0 ± 0.9	2.4 ± 0.4	299 ± 5	36 ± 8	23 ± 4	23 ± 4
P9	DDMGFGLFD	4.3 ± 0.3	2.1 ± 0.1	309 ± 7	29 ± 5	15 ± 2	26 ± 4
P10	DDDMGFGLFD	1.5 ± 0.1	1.8 ± 0.1	272 ± 6	20 ± 4	8 ± 2	28 ± 4
P11	SDDDMGFGLFD	0.5 ±0.04	1.2 ±0.04	196 ± 17	22 ± 3	5 ± 1	30 ± 4

METHOD

Fluorescence Anisotropy (FA)

Direct binding and unbinding of BODIPY-TMR labeled P11 peptide (5'-SDDDMGFGLFD-3') with purified RTA

Direct binding and unbinding of BODIPY-TMR labeled P11 peptide (5'-SDDDMGFGLFD-3') with purified Stx2A1

Chemical structure, Affinity (K_i), and inhibitory activity (IC₅₀) of small molecule inhibitors targeting toxin-ribosome interaction

RU-NT	Structure	MW (dalton)	K; FA° (μM)	IC ₅₀ b FA (μΜ)	IC ₅₀ Rib.° (μΜ)	EC ₅₀ Vero ^d (μΜ)
CC10501	000	204	32	119	427 n=1.7	UD
93	900	232	3	12	40 n=1	UD
202	900	250	4	15	31.5 n=1	169 n=1
135	. G. O. C.	311	3	12	49 n=1.2	135
102	300	232	2	9	38 n=1.3	120 n=1
165	900	246	2	9	45 n=1.5	98 n=1.5
124	400	288	5	21	23 n=1.4	52 n=1.2
192	200	260	1	6	18.5 n=1.2	36
206	to	258	0.6	4	18 n=1.6	29.5 n=1

values were measured by fluorescence anisotropy (F. HI plate reader.

value determined by FA is the inhibitor concentration: 50% of the fluorescent P11 probe from RTA. The ed by qRT-PCR is the inhibitor concentration required to

Comparative study of peptide binding affinities between ricin & Shiga toxin

Peptide	Peptide Sequence	K _ι (μM) usii	ng FA assay	IC ₅₀ (μM) using qRT-PCR		
		RTA	Stx2A1	RTA	Stx2A1	
P3	LFD	86 ± 8	> 1000	U.D.	U.D.	
P4	GLFD	42 ± 7	> 1000	102 ± 45	U.D.	
P5	FGLFD	47 ± 7	15 ± 2	121 ± 44	U.D.	
P6	GFGLFD	28 ± 7	10 ± 1	63 ± 13	U.D.	
P7	MGFGLFD	21 ± 2	6 ± 0.4	34 ± 10	60 ± 6	
P8	DMGFGLFD	6 ± 0.9	2.4 ± 0.4	23 ± 4	23 ± 4	
P9	DDMGFGLFD	4.3 ± 0.3	2.1 ± 0.1	15 ± 2	26 ± 4	
P10	DDDMGFGLFD	1.5 ± 0.1	1.8 ± 0.1	8 ± 2	28 ± 4	
P11	SDDDMGFGLFD	0.5 ± 0.04	1.2 ± 0.04	5 ± 1	30 ± 4	

- Differences between the way the peptides interact with the P-stalk site of each toxin show that the relative importance of certain amino acids differ between ricin and Shiga toxin

Chemical structure, Affinity (K_i), and inhibitory activity (IC_{50}) of inhibitors targeting toxin-ribosome interaction

RU-NT	Structure	MW (Dalton)	Κ _i (μΜ) using FA	IC ₅₀ (µM) qRT-PCR	EC ₅₀ (μM) Vero cells
CC10501	000	204	32	119	U.D.
93	900	232	3	12	U.D.
202	200.	250	4	15	169
135	Asc	311	3	12	135
102	306	232	2	9	120
165	300	246	2	9	98
124	For	288	5	21	52
192	300	260	1	6	36
206	toe	258	0.6	4	30

CONCLUSION

- Peptide data validated the P-stalk pocket as a novel target for inhibitors against toxin-ribosome
- Using FBLD with SPR we screened the Maybridge Ro3 Core library and identified CC10501, which binds at the P-stalk site of RTA and inhibits activity.
- We improved CC10501 using a structure-based design and a new fluorescence anisotropy (FA) assay and identified RU-NT-206 and RU-NT-192, which showed over 50- and 30-fold improved affinity, respectively.
- Ki data measured using FA assay showed a positive correlation with the Vero cell protection assay.

FUTURE WORK / REFERENCES

Acknowledgements:

This work was supported by NIH R01 grant Al072425 to NET.

- A. Dutta, Z. Szekely, H. Guven, J. McLaughlin, X.-P. Li and N. E. Tumer (2024). Anal. Biochem. 692:115580.
- McLaughlin JE, Rudolph MJ, Dutta A, Li XP, Tsymbal AM, Chen Y, Bhattacharya S, Algava B, Goger M, Roberge JY, Tumer NE (2025) Journal of Biological Chemistry 301(3):108310.