The 1st International Online Conference on Diseases

09-11 September 2025 | Online

Towards a high-resolution genotyping of the Latin American Mediterranean genotype of *Mycobacterium tuberculosis*

Alena Gerasimova, Alena Chilikina, Anna Vyazovaya, Igor Mokrousov* St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia

INTRODUCTION & AIM

The Latin American Mediterranean (LAM) genotype of an important part of the Euro-American lineage of *Mycobacterium tuberculosis*. LAM strains are spread in most regions of the world although its different lineages show certain geographic specificity, e.g. LAM RD-Rio branch is more prevalent in South America and parts of Africa. In its turn, RD115/LAM-RUS branch is endemic to Russia and Northern Eurasia and is frequently multidrug-resistant.

Figure 2. 24 MIRU-VNTR loci phylogeny of global collection of LAM strains (Mokrousov et al., 2015)

RD174/

RD-Rio-sublin T20/17-branch

SIT33-sublin.

closely related in their 24-MIRU-VNTR profiles, which may reflect their relatively recent dissemination across this sparsely populated area of Northern Eurasia. Practically, this means that the international 24-locus MIRU-VNTR format has limited utility for subtyping LAM-RUS strains. Previous studies demonstrated added value of hypervariable (HV) VNTR loci to discriminate within closely related Beijing genotype strains (Allix-Beguec et al., 2014).

AIM: to evaluate seven hypervariable VNTR loci for their discriminatory power among LAM-RUS strains.

METHODS

A sample of 133 *M. tuberculosis* LAM strains from different locations was subjected to spoligotyping (followed by comparison with SITVIT2) and 24-loci MIRU-VNTR typing. Strains were assigned to LAM based on spoligotyping, detection of LAM specific SNP in Rv0129c or by clustering with LAM reference profiles of MIRU-VNTRplus.org tool.

Seven hypervariable VNTR loci (3820, 4120, 3232, 1982, 2136a, 3155, 3336) were additionally genotyped. MIRU-VNTRplus.org and PAUP software were used for phylogenetic analysis of the VNTR data, treated as discrete variables. The Hunter-Gaston Index (HGI) was used to assess the discriminatory power of individual loci and their combinations.

RESULTS & DISCUSSION

Based on spoligotyping, 22 different spoligotypes were identified, of which SIT42 was the most prevalent (n=37), followed by SIT254 (n=26) and SIT252 (n=22).

Thirty-locus typing revealed 14 clusters (2–15 isolates) and 58 unique profiles. The Hunter-Gaston Index (HGI) for the 30-locus set was 0.979. HGI values for individual loci ranged from 0 (MIRU4, MIRU24, MIRU39, Mtub29) to 0.5595 (VNTR3820) and 0.6165 (MIRU40).

The combined discriminatory power of the 11 most polymorphic loci was 0.968 (13 clusters of 2–17 isolates; 67 unique profiles), which is nearly equivalent to that of the full 30-locus VNTR set.

Figure 5. Dendrogram of the studied LAM strains based on 11 most polymorphic VNTR loci.

Table . Spoligotypes of the studied LAM strains		
SIT 🚅	spoligoprofile	number of isolate.
20		3
42		37
60		1
150		2
252		22
254		26
264		7
266		1
402		1
444		3
492		2
496		5
500		3
560		1
803		4
1176		4
1227		2

CONCLUSION

The optimized 11-locus panel (7 classical Mtub04 MIRU40 MIRU10 MIRU16 MIRU23 MIRU26 QUB26 and 4 hypervariable 3820, 4120, 3232, 3336) provides sufficient discriminatory power for LAM genotype strains and could serve as a cost-effective tool for primary epidemiological surveillance of this important *M. tuberculosis* lineage.

Future research will evaluate this method with more strains from more world regions.

REFERENCES

Supply et al., J Clin Microbiol 2006. doi: 10.1128/JCM.01392-06.
Allix-Beguec et al., J Clin Microbiol. 2014. doi: 10.1128/JCM.02519-13.
Mokrousov et al., Mol Phylogent Evol. doi: 10.1016/j.ympev.2016.03.020.
Mokrousov et al. J Bacteriol 2013. doi: 10.1128/JB.01485-13.
Goig et al., Nature Reviews Microbiology 2025. doi: 10.1038/s41579-025-01159-w.
Gibson et al. J Clin Microbiol 2008. doi: 10.1128/JCM.02231-07.