The 5th International Online Conference on Nanomaterials

22-24 September 2025 | Online

Graphene Quantum Dot Based Nanozymes: A Promising Platform for NADPH Detection and Oxidative Stress Sensing

Herbert Che-Mughe¹, Julia Zhao^{1*}

1-University of North Dakota, Department of Chemistry, Grand Forks, ND, 58202

INTRODUCTION & AIM

- > NADPH, a target of metabolism functions as a reducing agent in many biosynthetic and antioxidant reactions in cells.
- Nanozymes are nanomaterials that display catalytic properties.
- Nanozymes can be divided into carbon based, metal based, metal oxide based and metal organic framework
- Graphene quantum dots due to their unique optical and electronic properties hold significant potential in sensing applications
- Accurate and sensitive detection of NADPH is crucial for studying its role in cellular processes.

Figure 1: Schematic presentation of nanozymes classifications (metal-, metal oxide-, and carbon-based nanozymes and other nanozymes like MOF, COF. (Long *et al.*,2021)

Figure 2: Schematic illustration showing how oxidative stress, mitochondrial dysfunction, neuroinflammation, and protein aggregation interact to drive neurodegeneration.

AIM

To synthesize, characterize graphene quantum dots with catalytic properties and test its fluorescence properties.

METHOD

Hydrodynamic size A 7.1 ±1.5 nm Pigno of the part o

Figure 3. Characterization of the synthesized GQDs. 3C shows Fluorescence emission spectra comparing control (red) and graphene quantum dots (blue). The control sample, lacking nanoparticles, shows negligible fluorescence, whereas the 5 μg GQD sample displays a strong emission peak, confirming their successful synthesis and intrinsic optical properties.

Cell Imaging

 $0 \mu g/ml$

Figure 4: Fluorescence microscopy images of BMVECs incubated with 0 μg/mL (top, control) and 5 μg/mL (bottom) fluorescent GQDs (blue) and counterstained with propidium iodide (red). Control cells show no signal, while treated cells display clear intracellular fluorescence in the merged images.

CONCLUSION

- Graphene quantum dot-based nanozyme was successfully synthesized and thoroughly characterized.
- Their unique optical properties demonstrated strong potential for the sensitive detection of NADPH, offering a promising platform for oxidative stress monitoring and related biomedical applications..

FURTUE WORK / REFERENCES

- Liang, M.; et al. Acc. Chem. Res. 2019,52(8), 2190-2200
- Wu, D.; et al. J. Am. Chem. Soc. 2020,142(46), 19602-19610