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RESULTS & DISCUSSION

CONCLUSIONREFERENCES

METHOD

 Chitosan (CS) is a natural cationic polysaccharide obtained by partial deacetylation of 

chitin, mainly sourced from crustacean shells [1].

 Chitosan is considered a highly attractive biomaterial for biomedical applications due 

to its unique physicochemical and biological properties [2]: 

 Biocompatibility;

 Biodegradability;

 Antimicrobial activity;

 Hemostatic effect .

 Chitosan has been widely employed in hydrogel systems for biomedical use, and in 

recent years, particular attention has focused on chitosan-based nanocomposite 

hydrogels, where nanoparticles further enhance their mechanical, biological, and 

functional performance [3].

INTRODUCTION & AIM 

 A systematic literature review was performed following PRISMA guidelines.

 Databases searched: PubMed, Web of Science, Scopus, ScienceDirect, Wiley, Google 

Scholar. 

 Search terms: chitosan hydrogel, nanocomposite hydrogel, chitosan nanoparticles, 

drug delivery, tissue engineering.

 Eligibility criteria:

 Original research (2019–2025) on chitosan-based nanocomposite hydrogels.

 Duplicates, inaccessible full texts, or irrelevant studies were excluded.

 The selection process is summarized in the PRISMA flowchart:

 Synthesis approaches of chitosan-based hydrogels

 Ionic gelation: electrostatic interactions between chitosan amino groups and 

multivalent anions; solvent- and initiator-free.

 Covalent crosslinking: stable chemical bonds with crosslinkers; improves mechanical

stability and long-term integrity.

 In situ nanoparticle formation: nanoparticles generated within the hydrogel matrix; 

ensures uniform dispersion and strong polymer–nanoparticle interactions.

 Roles of incorporated nanoparticles

 Reinforce the hydrogel network.

 Enhance antibacterial activity.

 Impart functionalities (e.g., magnetism, photothermal responsiveness).

 Key formulation parameters

 Influence mechanical strength, swelling, porosity, and drug release kinetics.

 Polymer blending strategies

 Chitosan + natural polymers → improved structural versatility.

 Enables injectable, self-healing, and stimuli-responsive nanocomposite systems.

 Polymer blending strategies

 Incorporating nanoparticles into chitosan hydrogels enhances their stability, extends 

their functional spectrum, and adapts the material to a wide range of biomedical 

applications. 

Application
Composition / 

Nanoparticles
Method Key Properties Ref.

Tissue 

engineering 

(magnetic 

scaffold)

Chitosan

+ Fe₃O₄

+ Gelatin 

+ Hyaluronic acid

Freeze-drying & 

incorporation of 

magnetic NPs

Magnetic, porous 

scaffold; improved 

mechanics; controlled 

ciprofloxacin release

[4]

Bone defect 

repair (3D 

printing)

Chitosan 

+ Hydroxyapatite 

+ Gelatin 

+ Hyaluronic acid 

+ Magnetic NPs

3D bioprinting & 

crosslinking

Bone defect filling, 

enhanced 

osteointegration, 

improved mechanical 

strength

[5]

Drug delivery & 

antibacterial

Chitosan

+ Agarose 

+ Fe₃O₄

+ Vancomycin

Double-network 

hydrogel with in 

situ NP 

incorporation

Sustained antibiotic 

release, antibacterial 

activity, good swelling 

behavior

[6]

Multifunctional 

composite 

hydrogel

Chitosan 

+ PNIPAM 

+ Nanoparticles

Physical/chemical 

crosslinking with 

NP dispersion

Thermo-responsive, 

improved cell adhesion 

and mechanics

[7]

 Chitosan-based nanocomposite hydrogels demonstrate strong potential as next-

generation materials in nanomedicine by integrating bioactivity, controlled release, and 

structural stability. 

 Progress in synthesis strategies, nanoparticle design, and polymer integration will 

further enhance their clinical applicability. 

 Optimizing safety, scalability, and translation remains essential for their successful 

implementation in biomedical practice.
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