

The 5th International Online Conference on Nanomaterials

22-24 September 2025 | Online

Chitosan-Based Nanocomposite Hydrogels Reinforced with Nanoparticles: Multifunctional Nanomaterials for Biomedical Applications

Raja Saadan^{1,2*}, Mohamed Chigr², Ahmed Fatimi¹

¹ERSIC, FPBM, Sultan Moulay Slimane University, Mghila, P.O Box 592, Beni Mellal 23000, Morocco ²LCMMC, FSTBM, University Sultan Moulay Slimane, Mghila, P.O. Box 523, Beni Mellal 23000, Morocco *Correspondence: raja.saadan@usms.ma

INTRODUCTION & AIM

 Chitosan (CS) is a natural cationic polysaccharide obtained by partial deacetylation of chitin, mainly sourced from crustacean shells [1].

- Chitosan is considered a highly attractive biomaterial for biomedical applications due to its unique physicochemical and biological properties [2]:
 - ✓ Biocompatibility;
 - ✓ Biodegradability;
 - ✓ Antimicrobial activity;
 - ✓ Hemostatic effect .
- Chitosan has been widely employed in hydrogel systems for biomedical use, and in recent years, particular attention has focused on chitosan-based nanocomposite hydrogels, where nanoparticles further enhance their mechanical, biological, and functional performance [3].

METHOD

- A systematic literature review was performed following PRISMA guidelines.
- Databases searched: PubMed, Web of Science, Scopus, ScienceDirect, Wiley, Google Scholar.
- Search terms: chitosan hydrogel, nanocomposite hydrogel, chitosan nanoparticles, drug delivery, tissue engineering.
- Eligibility criteria:
 - ✓ Original research (2019–2025) on chitosan-based nanocomposite hydrogels.
 - ✓ Duplicates, inaccessible full texts, or irrelevant studies were excluded.
- The selection process is summarized in the PRISMA flowchart:

REFERENCES

- 1. F. Hong et al., 2024. https://doi.org/10.1016/j.fochx.2023.101095
- 2. R. Cassano et al., 2024. https://doi.org/10.3390/polym16131770
- 3. J. Shah et al., 2025. https://doi.org/10.3390/jfb16020045
- 4. A. Abou-Okeil et al., 2024. https://doi.org/10.1038/s41598-024-78696-6
- 5. I. Apăvăloaiei et al., 2025. https://doi.org/10.1016/j.reactfunctpolym.2025.106422
- 6. A. Viteri et al., 2025. https://doi.org/10.1016/j.cej.2025.164214
- 7. J. Shan et al., 2024. https://doi.org/10.1016/j.heliyon.2024.e37431

RESULTS & DISCUSSION

☐ Synthesis approaches of chitosan-based hydrogels

- Ionic gelation: electrostatic interactions between chitosan amino groups and multivalent anions; solvent- and initiator-free.
- Covalent crosslinking: stable chemical bonds with crosslinkers; improves mechanical stability and long-term integrity.
- In situ nanoparticle formation: nanoparticles generated within the hydrogel matrix; ensures uniform dispersion and strong polymer—nanoparticle interactions.

□ Roles of incorporated nanoparticles

- Reinforce the hydrogel network.
- Enhance antibacterial activity.
- Impart functionalities (e.g., magnetism, photothermal responsiveness).

□ Key formulation parameters

Influence mechanical strength, swelling, porosity, and drug release kinetics.

□ Polymer blending strategies

- Chitosan + natural polymers → improved structural versatility.
- Enables injectable, self-healing, and stimuli-responsive nanocomposite systems.

□ Polymer blending strategies

 Incorporating nanoparticles into chitosan hydrogels enhances their stability, extends their functional spectrum, and adapts the material to a wide range of biomedical applications.

Application	Composition / Nanoparticles	Method	Key Properties	Ref.
Tissue engineering (magnetic scaffold)	Chitosan + Fe ₃ O ₄ + Gelatin + Hyaluronic acid	Freeze-drying & incorporation of magnetic NPs	Magnetic, porous scaffold; improved mechanics; controlled ciprofloxacin release	[4]
Bone defect repair (3D printing)	Chitosan + Hydroxyapatite + Gelatin + Hyaluronic acid + Magnetic NPs	3D bioprinting & crosslinking	Bone defect filling, enhanced osteointegration, improved mechanical strength	[5]
Drug delivery & antibacterial	Chitosan + Agarose + Fe ₃ O ₄ + Vancomycin	Double-network hydrogel with in situ NP incorporation	Sustained antibiotic release, antibacterial activity, good swelling behavior	[6]
Multifunctional composite hydrogel	Chitosan + PNIPAM + Nanoparticles	Physical/chemical crosslinking with NP dispersion	Thermo-responsive, improved cell adhesion and mechanics	[7]

CONCLUSION

- Chitosan-based nanocomposite hydrogels demonstrate strong potential as nextgeneration materials in nanomedicine by integrating bioactivity, controlled release, and structural stability.
- Progress in synthesis strategies, nanoparticle design, and polymer integration will further enhance their clinical applicability.
- Optimizing safety, scalability, and translation remains essential for their successful implementation in biomedical practice.