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Small dataset (10 - 100s): in-house 
nanobodies with measured yields & 
developability (high-quality labels).
Medium dataset (~2,000): nanobodies 
with partial annotations 
(literature/structural).
Largest dataset (4 million): non-
redundant native repertoire sequences 
(no experimental data, unlabeled). 

Summary:
• Multi-objective active nanobody selection 

strategy for better property predictions

Next Steps:
• Model catering to distribution shift
• Refined multi-objective optimization 

techniques
• Tests on complete native library
• Real AL cycle + tags

Nanobodies:
• small “keys” that match 

specific sites on cells, 
proteins

• can bind to block or 
modulate specific 
functions

• can carry payload (e.g., 
drug, fluorescent marker)

Advantages:
• Small size → reach hidden 

epitopes that classical 
antibodies cannot reach

• Stable & robust → more 
tolerant to harsh conditions

• Versatile → can be engineered 
for therapy, diagnostics, 
research

Uncertainty

Uncertainty Map highlighting 
areas with uncertain predictions 

per target in Ablang embedding 
space (dimensionality reduced 

with PCA). Blue = initial 
nanobodies; black = selected 

batch of nanobodies.

Active Learning

Obtaining experimental data is costly. A great ML model could guide discovery as it can point to potential candidates for a task, 
ensuring developability in the wet lab. A great model needs data to learn from.

Which experiments (= labeled data) would help to train such a model?

Big-Picture Idea

In each AL cycle, to select batch of nanobodies (e.g., 10):
• filter based on constraints for

yield, thermal stability, solubility (as predicted)
• drop outliers
• select top X nanobodies that maximize uncertainty in 

predicting 
yield, polyreactivity, accelerated & thermal stability, solubility

• greedily select diverse subset

Active Learning Cycle Simulation
• Simulation on 3000 

nanobodies from our native 
library

• Labels were obtained using 
Abpred², TEMPRO³ and 
Protein-Sol⁴

• Per-target models with per-
target uncertainties; different 
aggregation strategies
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