



# **Experimental Analysis of Piezoelectric Transducers for Impedance-Based Structural Health Monitoring**

Vinicius A. D. de Almeida, Fabricio G. Baptista \*, Lucas C. Mendes and Danilo E. Budoya

Department of Electrical Engineering Faculdade de Engenharia de Bauru UNESP – Univ Estadual Paulista

Av. Eng. Luiz Edmundo Corrijo Coube, 14-01, Bauru-SP, 17033-360, Brazil

\*Author to whom correspondence should be addressed; E-Mail: <u>fabriciogb@feb.unesp.br</u>





# Outline

- Structural Health Monitoring (SHM)
- Electromechanical Impedance (EMI) Method
- Piezoelectric Transducers
- Damage Detection Damage Indices
- Experimental Setup
- Results
- Conclusions





## **Structural Health Monitoring (SHM)**

**Objective: monitoring and detection of structural damage** 

**Application: various types of structures** 



Wikipedia/Wikimedia





## **Structural Health Monitoring (SHM)**

## **Benefits**







## **Electromechanical Impedance (EMI) Method**

## **Damage detection**



The electromechanical impedance (EMI) method stands out from the other methods by its simplicity and by using low-cost, lightweight and small piezoelectric transducers





## **Electromechanical Impedance (EMI) Method**

## Principle



$$Z_E(\omega) = \frac{1}{j\omega C_0} \| j Z_T \left( \frac{s_{11}}{d_{31}\ell} \right)^2 \left[ \frac{1}{2} \tan\left( \frac{k\ell}{2} \right) - \frac{1}{\sin(k\ell)} + \frac{Z_S}{j2Z_T} \right]$$







## **Piezoelectric Transducers**



PZT (lead zirconate titanate) piezoceramic Type: 5H Size: 15 x 15 x 0.267 mm



MFC (macro-fiber composite) Type: M2814-P2 Size: 37 x 18 mm



Piezoelectric diaphragm – "Buzzer" Size: 27 mm (external diameter) International Electronic Conference on Sensors and Applications 1-16 June 2014



## **Damage Detection – Damage Indices**



- Comparison of two electrical impedance signatures: healthy condition and damaged condition
- We used the <u>real part</u> of the electrical impedance

#### **RMSD Root mean square deviation**

$$RMSD = \sum_{k=\omega_I}^{\omega_F} \sqrt{\frac{\left[Z_{E,D}(k) - Z_{E,H}(k)\right]^2}{Z_{E,H}^2(k)}}$$

CCDM Correlation coefficient deviation metric

$$CCDM = 1 - \frac{\sum_{k=\omega_{I}}^{\omega_{F}} \left[ Z_{E,H}(k) - \overline{Z}_{E,H} \right] \left[ Z_{E,D}(k) - \overline{Z}_{E,D} \right]}{\sqrt{\sum_{k=\omega_{I}}^{\omega_{F}} \left[ Z_{E,H}(k) - \overline{Z}_{E,H} \right]^{2}} \sqrt{\sum_{k=\omega_{I}}^{\omega_{F}} \left[ Z_{E,D}(k) - \overline{Z}_{E,D} \right]^{2}}}$$





## **Experimental Setup**

## **Structures**



Aluminum beams 500 x 38 x 3 mm

The transducers were placed on the beams using cyanoacrylate glue

Damage was simulated by placing a small steel nut

11 x 0.5 mm, 1 g



International Electronic Conference on Sensors and Applications 1-16 June 2014



## **Experimental Setup**

## **Measurement System**







## **Experimental Setup**



#### **SMART Materials and Structures**





## **Results – Impedance Signatures – 5H PZT patch**







### **Results – Impedance Signatures – MFC transducer**



International Electronic Conference on

**Sensors and Applications** 

1-16 June 2014



## **Results – Impedance Signatures – Buzzer**







## **Results – Impedance Signatures**

According to the electrical impedance signatures:

- There are resonance peaks in the signatures related to the natural frequencies of the structures;
- •Structural damage (nut) causes variations in frequency and amplitude in these peaks, which can be quantified by indices of damage;
- •The peaks are more significant at low frequencies and tend to decrease as the frequency increases;
- The PZT patch has provided impedance signatures with higher amplitude;
- Impedance signatures with lower amplitude were obtained using the MFC transducer;
- The piezoelectric diaphragm provided impedance signatures with intermediate amplitude between the other two transducers.





#### **Results – Damage Indices – 5H PZT Patch**



International Electronic Conference on Sensors and Applications 1-16 June 2014



## **Results – Damage Indices – MFC transducer**







#### **Results – Damage Indices – Buzzer**







## **Results – Damage Indices**

According to the damage indices:

- •The PZT patch and the diaphragm provided the highest indices for low frequencies around approximately 10-70 kHz;
- The MFC transducer provided higher indices at high frequencies;
- The piezoelectric diaphragm showed a reasonable sensitivity to detect damage, although the indices were lower compared to other transducers. However, this device has the advantage of having a very low cost.





## Conclusions

- The experimental results indicate that the transducers have different sensitivities to detect damage;
- The sensitivity varies significantly with the frequency range;
- •it is important to note that this study does not consider an important feature of the transducers for the EMI method, which is to provide repeatable and consistent impedance signatures.





## Acknowledgments

The authors would like to thank FAPESP–Sao Paulo Research Foundation (grants 2013/16434-0, 2012/10825-4 and 2013/02600-5), CNPq, and PROPe-UNESP for the financial support.

#### **Questions?**

Fabricio Guimarães Baptista <u>fabriciogb@feb.unesp.br</u>

Department of Electrical Engineering Faculdade de Engenharia de Bauru UNESP – Univ Estadual Paulista Av. Eng. Luiz Edmundo Corrijo Coube, 14-01, Bauru-SP, 17033-360, Brazil

