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The use of the Public Goods Game as a proxy for collaborative community 
efforts is widespread among many academic circles. The main question 
revolves around how to solve the free-rider problem in the most cost-effective 
way possible, and this tends to involve the optimal use of incentives.
This work presents how a reinterpretation of the controlled punishment used in 
Botta 2021 and Grau 2022 based of the findings of Botta 2024 allows for a more 
realistic punishment strategy, that at the same time may be more cost-effective.
The system analyzed is as described in Botta 2021, using the replicator 
dynamics for the Optional Public Goods Game with only one difference: 
fractional punishment variable “𝑑” is now replaced by “𝑣” which is the product of 
the fraction of punished  free-riders and how much of their expected benefit is 
taken from them as punishment. 

Let 𝑒 𝑡 ≔ [𝑥 𝑡 − 1, 𝑦 𝑡 , 𝑧 𝑡 ] be the state error when 𝑥, 𝑦, 𝑧 are the 
frequencies of cooperators, free-riders and independents respectively. Then 
cost functions similar to equation (1) were used to analyze and compare the 
reduction in costs obtained by allowing the control variable to go beyond 1 with 
the previously mentioned mechanism.
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The Python package GEKKO was used to solve the optimization problem that 
minimizes equation (1) for each case.

RESULTS & DISCUSSION
Preliminary results like the one in Figure 1 show that going beyond 1 for 
constant punishment strategies already allows for better results in some cases.

The incomplete punishment strategy allows to make further gains from what 
was previously achieved using only fractional punishment. This however needs 
to be scrutinized just as any other punishment strategy in order to bring it closer 
to a real scenario, given that at the time there is no cutoff to how big the fines 
an individual could acquire are. Future works will focus on that.

a) b)

Figure 1: Given weights [0, 0.6, 0.001, 0.399] for cost function (1), a) shows the 
trajectories in state space for constant control values of 𝑣 with starting state 
[0.35, 0.55, 0.1] going from red to blue and then green as 𝑣 increases. The 

black trajectory indicates the one with the lowest cost and said value is 
annotated. And b) shows the values of cost function J as a function of the 

constant control values that 𝑣 takes. Again, the minimum is shown in black with 
a dashed vertical line as a marker of the spot.

However, although choosing a constant control strategy that minimizes costs is 
interesting in itself because of the simplicity of the approach, an optimal strategy 
that changes through time has been shown to be more cost-efficient [2].
To further explore this, a representative cost function is taken to show the 
difference between optimal control strategies with an upper bound at 1 and 
those without an upper bound. This is shown in Figure 2.
Although there are clear gains made from this, it needs to be pointed out that 
even with perfect locating of all free riders (fraction of punished free-riders equal 
to 1), the fines they may acquire as punishment may be too high for them to 
pay, indirectly causing the complete exclusion of these individuals from the 
system.
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Figure 2: Given weights [0, 0.2, 0.001, 0.7 99] for cost function (1), a) shows 
the trajectories in state space for initial states [0.2, 0.65, 0.15], [0.2, 0.4, 0.4] 

and [0.2, 0.15, 0.65] using bounded (solid lines) and unbounded (dashed lines) 
optimal controllers to minimize the cost function. b) and c) shows the

corresponding curves for control variable 𝑣 and costs 𝐽 in the analyzed time 
period. The last image shows the final values of each cost curve, allowing us to 

compare the paired trajectories.
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