Guided Reward Strategy in Imperfect-Information Games

Jiayang Wang, Yang Xu, Chuangji Zeng Jiangxi Agricultural University, Nanchang University

1. Research Motivation & Value

- Extreme Decision Complexity: Overcoming partial observability & hidden state inference in imperfect-information games.
- Real-World Mapping: Applications in intelligent transport, aerospace scheduling, and medical decision-making.
- Core Challenges: Tackling information asymmetry, diverse strategies, stochastic dynamics, and short vs. long-term planning.

2. Technical Foundations

- Spatio-Temporal Modeling: CNN for card patterns, ResNet for stable gradients, and LSTM/GRU for action sequence dependency.
- Partially Observable RL: MDP extension for non-Markovian properties, belief state estimation, and value functions dependent on observation history.
- Sample Complexity Bottleneck:
 Highlighting the necessity of guided rewards to accelerate learning in sparse reward environments.

3. Mahjong Encoding & Replay

- Multi-View Encoding: Dual hand representation (4x9 matrix + 34-bit onehot), integer feature encoding, and n-gram action history hashing.
- Effective Tile Estimation: Quantifying win potential by estimating completion rate with unseen tiles.
- Intelligent Replay Buffer: Timestamp frequency capping, and dynamic 1:1 win/loss sampling to prevent concept drift and policy bias.

4. Guided Reward Architecture

"Guide → Reward Prediction → RL Policy" Loop

Supervised Guide Network

Soft Label (Win-rate Prediction) + Symmetric Data Augmentation

 \downarrow

Dual-Path GRU Reward Prediction
Temporal Difference Encoding (Δ Hidden State)

 \downarrow

Hybrid Reward Formula

 $R = R_{base} + R_{extended} + R_{predicted}$

1

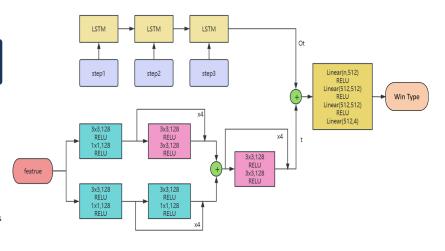
RL Agent (DQN/PPO)

Receives dense feedback for policy updates

5. Experiments & Insights

- Guide Network Performance: Achieved 85% test accuracy, a +6% improvement over CNN baseline. Error concentration in rare hand patterns identified.
- Reward Prediction Convergence: Dual GRU loss dropped to 1.0 within 75 epochs (vs.
 >2.0 for CNN). Optimal 128-dim hidden laver found.
- End-to-End RL Effect: DQN with hybrid rewards boosted win-rate from 10% to 30% in 1.5M steps, approaching PPO's upper limit

Metric	Traditional RL	Hybrid Reward RL
Sample Efficiency	Baseline	40% Less Data
Final Win- Rate	18%	30%
Avg. Game Score	+15	+50 (Stable)



⇔ 6. Conclusion & Next Steps

Key Technical Contributions

- Feature-free guider with prior knowledge from data augmentation.
- Dual-GRU for dense, unbiased credit assignment.
- Universal integration with mainstream RL algorithms (DQN/PPO).
- Dynamic replay buffer to prevent sampling bias and drift.

Future Research Directions

- Refine hand classification to reduce errors on rare patterns.
- Implement active learning for high-uncertainty sample labeling.
- Automate reward function tuning via meta-gradients.
- $\bullet \quad \mbox{Validate model transferability to other domains (e.g., Poker, StarCraft)}.$