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o 1. Research 4. Guided Reward 5. Experiments &

Motivation & Value Architecture Insights

« Extreme Decision Complexity: Overcoming "Guide — Reward Prediction — RL » Guide Network Performance: Achieved
partial observability & hidden state Policy" Loop 85% test accuracy, a improvement over
inference in imperfect-information games. CNN baseline. Error concentration inrare

« Real-World Mapping: Applications in Supervised Guide Network hand patterns identified.
intelligent transport, aerospace scheduling, Soft Label (Win-rate Prediction) + Symmetric « Reward Prediction Convergence: Dual GRU
and medical decision-making. Data Augmentation loss dropped to 1.0 within 75 epochs (vs.

« Core Challenges: Tackling information >2.0 for CNN). Optimal 128-dim hidden
asymmetry, diverse strategies, stochastic ! layer found.
dynamics, and short vs. long-term planning. ( ) o End-to-End RL Effect: DQN with hybrid

DuaI-Path GRU Reward Pre.dlctlon rewards boosted win-rate from 10% to
Temporal Difference Encoding (A Hidden State) in 1.5M steps, approaching PPO's upper

.o 2. Technical . /

limit.

oo .
Foundations !
( ) X Traditional Hybrid
« Spatio-Temporal Modeling: CNN for card Hybrid Reward Formula Metric RL Reward RL
patterns, ResNet for stable gradients, and R = Rpase + Rextended * Rpredicted
LSTM/GRU for action sequence dependency. S 4 Sample Baseline 40% Less
« Partially Observable RL: MDP extension for ! Efficiency Data
non-Markovian properties, belief state Final Win- . .
estimation, and value functions dependent RL Agent (DQN/PPO) Rate 18% 30%
on observation history. Receives dense feedback for policy updates
o Sample Complexity Bottleneck: Avg. Game +15 +50 (Stable)
Highlighting the necessity of guided rewards Score
to accelerate learning in sparse reward
environments.
ISTM > LST™M (> IST™
. . ot
@ 3. Mahjong Encoding T T T
& Replay stepl step2 step3 Linear(n,512)
RELU
Linear(512,512)
» Multi-View Encoding: Dual hand G)" Linea':(ESIal; -
representation (4x9 matrix + 34-bit one- X4 RELU'
. . Linear(512,4)
hot), integer feature encoding, and n-gram 343,128 333,128
ion hi ; RELU RELU x4
action history hashing. 1128 > 3aio t
- R . . RELU RELU
« Effective Tile Estimation: Quantifying win 3’%:63
potential by estimating completion rate with ( featrue 3x3,128
unseen tiles. 333,128 333,128 =
) X RELU RELU
« Intelligent Replay Buffer: Timestamp 1x1,128 T 1x1128
h g RELU RELU
frequency capping, and dynamic 1:1 win/loss “
sampling to prevent concept drift and policy
bias.
© 6. Conclusion & Next Steps
Key Technical Contributions Future Research Directions
o Feature-free guider with prior knowledge from data augmentation. « Refine hand classification to reduce errors on rare patterns.
« Dual-GRU for dense, unbiased credit assignment. « Implement active learning for high-uncertainty sample labeling.
« Universal integration with mainstream RL algorithms (DQN/PPO). « Automate reward function tuning via meta-gradients.

« Dynamic replay buffer to prevent sampling bias and drift. « Validate model transferability to other domains (e.g., Poker, StarCraft).
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