

Towards development of a label for Zero Emission Buildings: A Tool to evaluate potential Zero Emission Buildings

Devi Bühler Thorsten Schuetze Ranka Junge

1 October 2014

Overview

- Requirements of ZEB-ISTIS Concept for tool
- Development of ZEB Assessment Tool
- Application of ZEB Assessment Tool
- Evaluation of ZEB Assessment Tool

Requirements of ZEB-ISTIS concept for tool

- Evaluation of **existing** buildings (\rightarrow case studies)
- Assessment of
 - Energy
 - Biomass
 - Water
 - Qualitative aspects
- Applicable to different countries of location (partner countries)
- Incorporation of various environmental impacts

• Process: evaluation of decision parameters

Pre-Assessment

Considerations:

- How can a pre-assessment be easily conducted in order to determine if the building is eligible for a further examination with the tool?
- What method can be applied to ensure the building address the three sectors to a minimum level?

Pre-Assessment: Eligible Technologies

Table 2: Eligible technologies for the assessment of the three sectors of the Zero Emission Building(ZEB) Concept. At least two sectors with at least two technologies each ought to be implemented in
a building in order to qualify for further evaluation.

Sector	Eligible technologies			
Weter	Rainwater harvesting, water saving devices, decentralized wastewater treatment,			
water	water re-use, urine separation			
D	Photovoltaic, solar thermal collectors, wind turbine, geothermal energy, highly			
Energy	insulated envelope, heat recovery, use of waste heat, passive energy use			
	Composting of organic waste, composting of faeces, vermicomposting, nutrients			
Biomass	recovery from urine, production of fertile soil, biochar production, food production on			
	site (soil based or soilless, such as hydroponic, aquaponics), biomass production on			
	site			

Pre-Assessment: Eligible Technologies

Conditions for further assessment:

- 2 implemented eligible technologies to fulfil sector
- 2 fulfilled sectors fur further assessment with ZEB Tool

System boundary

Considerations:

- What processes should be considered?
- Which processes have an environmental impact?

System boundary: Site boundary

Considered flows:

- Flows into the system boundary
- Flows out of the system boundary
- Flows conveyed by human activity

System boundary: Site boundary

Relevant energy and resource flows (energy & water):

- Grid electricity consumption (Grid electricity)
- Consumption of external energy sources (External energy)
- Consumption of freshwater from central supply facility (Freshwater)
- Discharge of wastewater into central treatment plant (Wastewater)

Different considerations for biomass

Quantification of environmental impact

Considerations:

- How can the environmental impact be quantified?
- Which method fulfils the requirements of the ZEB concept?

Quantification of environmental impact: *Ecological Scarcity*

- "Distance to target" based method
- Based on environmental laws and political targets
- Unit: UBP (Umweltbelastungspunkte, Eco-Points)
- Advantages:
 - Incorporates various environmental impacts
 - Different values for each country

Database for UBP

Considerations:

• Which databases can be used to look up the values for the relevant flows?

Database for UBP: Ecoinvent Database, KBOB-list, own calculations

- Ecoinvent Database: Most comprehensive international database for Life Cycle Inventory Data
- KBOB-list: Life cycle assessment data for building industry
- Considerations for biomass:
 - Difficult to determine environmental impact of biomass input (food)
 - Cannot be avoided anyway
 - → Calculation of potentially avoided UBP if specific processes were implemented (i.e. composting, nutrients recovery)

Quantification of qualitative aspects

Considerations:

- How can qualitative aspects be assessed in a quantitative way?
- Which criteria should be considered?
- How can sensible benchmarks be established?

Quantification of qualitative aspects: Additional UBP

- Set of criteria
- Allocation of grade:
 - «Fully applies»
 - «Partially applies»
 - «Does not apply»
- Benchmarks

	Table 6: Compilation of criteria for the evaluation of qualitative aspects				
	Criteria	Fully applies	Partially applies	Does not apply	
	Additional Points	+ 0 Points	+ 800 Points	+ 1600 Points	
		Public traffic	Public traffic	Public traffic	
1	Good connection to public transport	connection within	connection within	connection over	
		300 m	1 km	1 km	
\mathbf{r}	Integration of greenery into the	Roof and façade	Roof or façade	No graning	
2	building	greening	greening	No greening	
2	Building construction is suitable for	Suitable location	Suitable location	None of both	
3	a potential change of use	and building shape	or building shape	None of both	
	Building is constructed of ecological				
4	readily available primary raw	80 - 100 %	40 - 80 %	0 - 40 %	
	materials				
	(Caspar & Rütter-Fischbacher, 2010)				
	Grey energy of construction				
5	(per energy reference area, 60 years	$< 30 \text{ kWh/m}^2$ a	$30 - 60 \text{ kWh/m}^2$ a	$> 60 \text{ kWh/m}^2$ a	
5	lifetime; according to bulletin SIA		30 - 00 k w m/m a		
	2032 (Gugerli et al., 2008))				
6	Building design fits to the	Adapted shape	Adapted shape or	None of both	
U	surrounding environment	and materials	materials		

Calculation of target value

- How can consideration be given to different building purposes and corresponding variation of resource consumption?
- How should the target value be calculated and expressed?

Calculation of target value:

Classification into building types Different benchmarks Calculation of degree of achievement

Classification & Benchmark

Table 7: Classification of buildings with benchmarks based on the energy consumption indicator of Minergie. The benchmark value corresponds to zero degree of achievement for the particular type of

building

	eanaing.		
Building type	Minergie energy consumption indicator (kWh/m²)Consumption Index		Benchmark (Rating Points)
Industry Store	20	1	100'000*
Sport installation	25	1.25	125'000
Apartment building Single-family Home	38	1.9	190'000
Administration Sales School Meeting venue Special construction	40	2	200'000
Restaurant/ Hotel	45	2.25	225'000
Hospital	70	3.5	350'000

A REAL PROPERTY	
	7h
KORA	aw

* The 100'000 Rating Points benchmark represents the basic benchmark for the ZEB Assessment Tool. It was established based on experimental data of buildings examined with the ZEB Assessment Tool

Calculation of degree of achievement

The achieved number of UBP for the assessed object was calculated as follows:

$$Achieved \ UBP = \frac{UBP_{Water} + UBP_{Energy} + UBP_{Biomass}}{Area} + Additional \ UBP$$

Subsequently, the degree of achievement was calculated:

Degree of achievement (%) = $100 - \frac{100 * Achieved UBP}{Benchmark}$

Min. 80% degree of achievement to achieve the "ZEB Label"

Application ZEB Assessment Tool – Input data

Table 8: Input parameters and units for the ZEB Assessment Tool. Units FA, PA and NA denote "fully

Input parameter	Unit or Description
Country	-
Building type	-
Total effective area of building	m ²
Average occupancy per day	Number of people
Freshwater*	m ³ /a
Wastewater*	m ³ /a
Grid electricity*	kWh/a
Electricity product	-
External energy*	MJ/a
Application of:	
- Composting of faeces	YES / NO
- N recycling from urine for fertilizer	YES / NO
- P recycling from urine for fertilizer	YES / NO
- Nutrients recovery of organic kitchen waste	YES / NO
- Good connection to public transport	FA / PA / NA
- Integration of greenery into the building	FA / PA / NA
- Construction is suitable for a potential change of use	FA / PA / NA
- Building is constructed of ecological materials	FA / PA / NA
- Grey energy of construction	FA / PA / NA
- Building design fits to the surrounding environment	FA / PA / NA

applies", "partially applies", and "does not apply", respectively.

* Notation according to the definition in point 2.2.2 System boundary

Application ZEB Assessment Tool – Pre-Assessment

ZEB Assessment Tool

Project:	New Monte Rosa Hut			
Pre-Assessment				
Sector	Eligible technologies			
Water	Rainwater harvesting			
	Water saving devices			
	Decentralized wastewater treatment			
	Water re-use			
	Urine separation			
Energy	Photovoltaic			
	Solar thermal collectors			
	Wind turbine			
	Geothermal energy			
	Highly insulated			
	Heat recovery			
	Use of waste heat			
	Passive energy use			
Biomass	Composting of organic waste			
	Composting of faeces			
	Vermicomposting			
	Nutrients recovery from urine			
	Production of fertile soil			
	Biochar production			
	Food production on-site			
	Biomass production on- site			
Further Assessment	YES			

Figure 3: Pre-Assessment in the ZEB Assessment Tool

Application ZEB Assessment Tool – Assessment of Energy, Water & Biomass

Country	Switzerland		
Building type	Restaurant/ Hotel	Choose fr	om the box
Total effective area of building (m2)	698	Fill in the	yellow fields
Average occupancy (people/day)	100		******
Water			4
Freshwater		Wastewater	
Water use (m3/a)	0	Discharge water (m3/a)	0
Ecological scarcity (UBP/m3)	362.9	Ecological scarcity (UBP/m3)	4077.2
UBP	0	UBP	c
Energy			
Grid electricity	A	External energy	
Electricity use from grid (kWh/a)	0	Energy source 1	Rapeseed oil
Electricity product	CH Label-certified electricity	Energy consumption (MJ/a)	237600
Ecological scarcity (UBP/kWh)	50.618	Energy source 2	NO
		Energy consumption (MJ/a)	0
		Avg. ecological scarcity (UBP/MJ)	15.51
UBP	0	UBP	3685176
Biomass			
Total ecological scarcity (UBP)			22514088
Processes			Avoided UBF
Composting of faeces		NO	C
N recycling from urine for fertiliser		NO	C
P recycling from urine for fertiliser		NO	C
Nutrients recovery of organic kitchen	waste	YES	153750
e.g.	composting, use of digestate	UBP	22360338.00
Total UBP of operation	26045514		
UBP/m2	37314		

Figure 4: Assessment of the three sectors Water, Energy and Biomass in the ZEB Assessment Tool.

Application ZEB Assessment Tool – Qualitative aspects

	Fully applies	Partially applies	Does not apply
Good connection to public transport	0	0	۲
ntegration of greenery into the building	0	0	۲
Building construction is suitable for a potential change of use	0	۲	0
Building is constructed of ecological materials	۲	0	0
Grey energy of construction	۲	0	0
Building design fits to the surrounding environment	0	۲	0

Figure 5: Assessment of qualitative aspects in the ZEB Assessment Tool

Application ZEB Assessment Tool – Output data

Figure 6: Output data of the ZEB Assessment Tool

Evaluation of ZEB Assessment Tool

Advantages ZEB Assessment Tool:

- Requires small amount of input data
- Allows simple primary assessment of a specific building
- Covers the aspects of energy, water and biomass
- Incorporates qualitative aspects
- Applicable in different countries
- Considers various environmental impacts
- → The ZEB Assessment Tool is well adapted to the requirements of the ZEB concept

