

The 4th International Electronic Conference on Processes

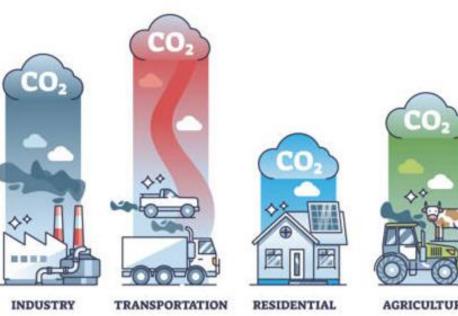
20-22 October 2025 | Online

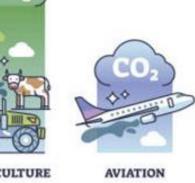
Integrated DFT Study of CO₂ Capture and Utilization in Gingerol Extraction Using Choline Chloride-Lactic Acid Deep Eutectic Solvent

Abdulsobur OLATUNDE and Toyese OYEGOKE*

CAD Engineering of Process & Reactive Interfaces Group, Chemical Engineering Dept., ABU Zaria, Nigeria.

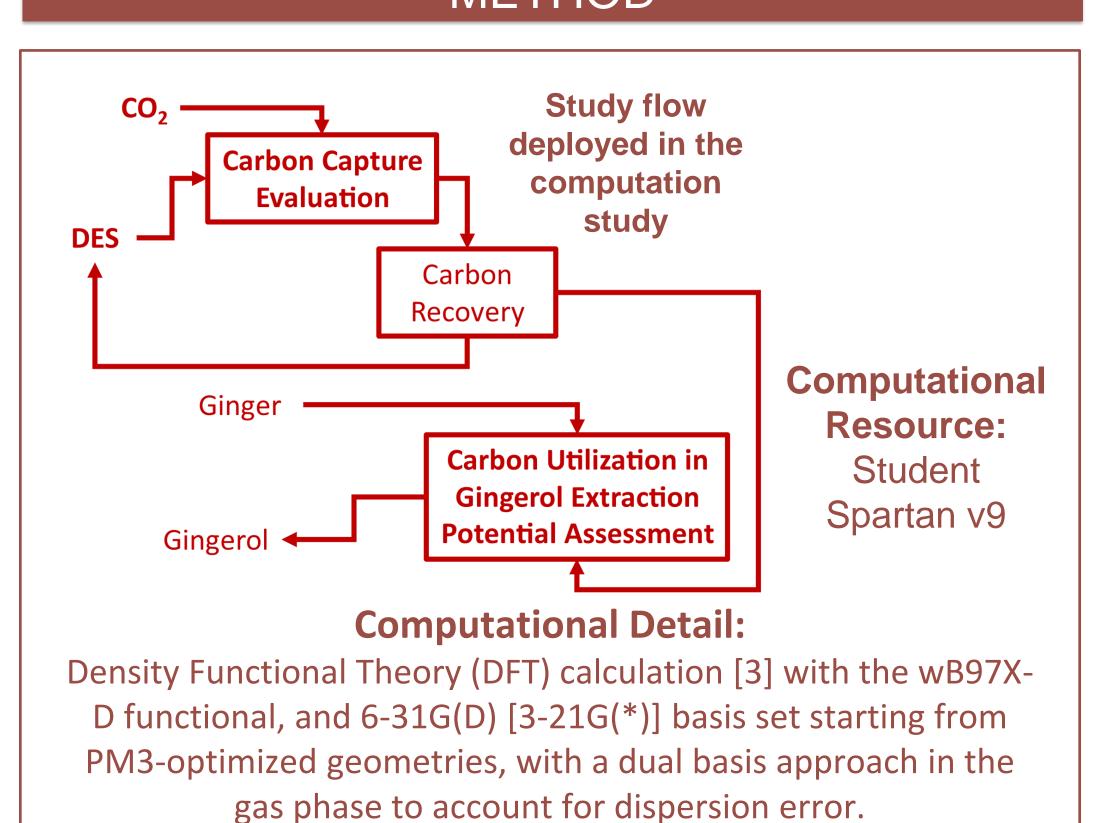
*Corresponding email: OyegokeToyese@gmail.com


CH₄


INTRODUCTION & AIM

☐ The rate of carbon emission has continued to be subject of concern global due to its larger relative to other greenhouse gases [1,2].

□ It is commonly released through different processes holding in industries, residential places, transportation, and many others [2].



Aim of Study:

To investigate, using DFT, how choline chloride–lactic acid DES captures CO₂ and uses it to enhance gingerol extraction for sustainable pharmaceutical applications.

METHOD

RESULTS & DISCUSSION

Table 1: Evaluation of DES Formation Energy & HBA-HBD Interaction									
					IEG-CHL				
DES Component	Molecular Formula	HOMO (eV)	LUMO (eV)	Egap (eV)	HOMO (eV)	LUMO (eV)	F.E (eV)		
CHL	C ₅ H ₁₄ CINO	-7.83	3.04	10.87	10.87	10.87	-1.92		
LAC	C₃H ₆ O₃	-10.18	0.99	11.17	8.82	13.22	-1.92		

□ CIC-LAC forms
a stable DES
(F.E = -1.92 eV)
with CIC as the
reactive
acceptor and
LAC as the
stable donor.

□ The CLC-LAC has a lower energy band gap (11.04 eV) than MEA (12.42 eV), indicating higher chemical reactivity and better suitability for CO₂ capture.

Table 2: Molecular Properties for Carbon Capture IEG-CO₂ HOM Molecular LUMO Egap HOMO LUMO O (eV) (eV) (eV) Formula (eV) (eV) 14.98 CO_2 -13.13 14.98 CO_2 1.85 14.98 $C_3H_7NO_3$ MEA -8.80 3.62 12.42 16.75 10.64 CHL-CO₂.C₈H₂₀CINO₄ -9.34 1.71 11.04 14.83 11.19 LAC

Table 3: Carbon Capture Potential of Different Solvents

Solvent	Molecular Formula	Binding Energy (eV)		
MEA	C ₃ H ₇ NO ₃	-0.234		
CHL-LAC	C ₈ H ₂₀ CINO ₄	-0.86		

□ DES-CO₂ binding energy (-0.86 eV) is stronger than with MEA (-0.234 eV), indicating better CO₂ capture.

Table 4: Potential of CO₂ for Gingerol Extraction

□ CO₂-gingerol shows moderate binding (-0.17 eV), suggesting extraction potential.

□ DES-gingerol binding is much stronger (-1.87 eV), confirming its effectiveness as a green solvent.

DES **IEG-GIN** НОМО LUMO B.E Egap Compone HOMO LUMO (eV) (eV) (eV) (eV) (eV) (eV) CO_2 -0.17 -13.13 1.85 14.98 10.55 10.55 N/A GIN -8.70 0.77 9.48 9.48 9.48 -0.73 -9.77 12.98 10.55 Ethanol 4.28 14.05 -9.34 10.12 -1.87 CHL-LAC 11.05 1.70 10.10

CONCLUSIONS

- □ CLC-LAC demonstrated stronger CO₂ affinity than MEA, confirming its effectiveness for carbon capture.
- □ CLC-LAC high binding energy with 6-gingerol supports its dual use in CO₂ reuse and green pharmaceutical extraction.

ACKNOWLEDGEMENT

REFERENCES

[1] Ravichandran et al. (2024). Env. Sci. & Poll. Res., 31(44):55895.

[2] Shutterstock (2025). https://www.shutterstock.com/image-vector/greenhouse-gases-emissions-pollution-co2-carbon-2215036273?dd_referrer=https%3A%2F%2Fwww.google.com%2F

[3] Kyle et al. (2014). Journal of Chem. Educ. 91(12):2116.