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INTRODUCTION & AIM

With hydrogen as a clean but hazardous energy carrier, solid-state hydrogen storage in the form of a
metal hydride has come forth as a safe and low-pressure storage solution with competitive
volumetric energy density. In this technology, hydrogen is stored in a hydride-forming metal, in this
study specifically AB5-type metal hydride, through exothermic absorption, which can then be
discharged through endothermic desorption. This results in a complex batch system where hydrogen
discharge is caused by high-temperature fluid heating the reactor and, by extension, the metal
hydride bed. This, in turn, increases the hydrogen pressure of the gas surrounding the metal hydride
bed, which is then released through a regulator to achieve the desired pressure of the discharge
hydrogen. This discharge dynamic system, as a result, is notoriously hard to model and predict.

In general, hydride-forming metal reactors are modelled using lumped parameter models. In this
approach, mass conservation, energy conservation and reaction kinetics are of great importance.
Regarding the reaction kinetics, the sorption-chemical reaction isotherms play an important role.
Thus, an isotherm model to represent accurate isotherm data is also key.

For the proposed modelling approach, certain simplifications are introduced, including the
assumption that the gas acts as an ideal gas, local thermal equilibrium, and adiabatic conditions.
Further simplifications can be made, such as constant thermal and physical properties. For this
purpose, the finite element method allows these models to be adapted easily to different reactor
geometries with accurate results.

Artificial neural networks have been utilised for optimisation, tracking and modelling purposes. More
specifically, digital twins are a transformative technology which allows for the accurate prediction
and diagnosis of systems. Furthermore, digital twins can be used to enhance the design process as
well as increase the lifespan of systems, specifically in the case of energy storage applications

METHOD

Experimental equipment to validate this study was supplied by HySA-Systems under the umbrella of
the University of the Western Cape. Figure 1 represents a schematic diagram of the experimental
setup filled with LaNi, ;Sn, ; hydride-forming metal. This unit is an industrial unit, used to compress
hydrogen, installed at a mine in the Northwest. Thus, tests were then performed at normal
operational conditions so as not to disrupt the operation of the mine. For the discharging validation
data, the desired gas pressure delivered by the unit was set at around 16 bar on the regulator, and to
achieve that, steam of 135 °C to 145 °C was used.

Lo - For the finite element model, COMSOL
1 - &= - Multiphysics was used with an ideal gas
assumption. Considering the bed expansion,
the assumption was made that 25%
volumetric expansion is linearly proportional
to concentration. Finally, gas in bed transport
was considered to follow Darcy’s law and a
porous heat transfer model was used. Figure 2
shows the performance of the model.
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Figure 1: Schematic diagram of a hydride-based
hydrogen compressor
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Figure 2: Computational fluid dynamics validation with time versus concentration and temperature
with (A) discharge gas pressure at 16.4 bar with heating fluid at 135 °C and (B) discharge gas pressure
at 16 bar with heating fluid at 142 °C

This model was then used to generate training data by varying the operational input parameters and
measuring the dynamic output. This data was then used to train an artificial neural network using
the desired gas pressure, heating fluid temperature, and time as inputs and concentration as the
variable the neural network would predict. These neural networks would vary in layer count and
hidden neuron count using a RelLU activation and the Levenberg-Marquardt training algorithm. For
this, both MathWorks MATLAB and TensorFlow were used with a 70-15-15 Training-Testing-
Validation split.

The trained models would then be re-validated against the experimental data, and performance
would be analysed in terms of R-squared and mean-squared-error, which can be considered
measures of precision and accuracy of the model. Using simulated data to train the neural networks
bypassed the need for extensive and expensive experimental trials.

RESULTS & DISCUSSION

: : 105 ©
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experimental data regarding the discharge 3 3 — —1 Layer
state. This is a fully connected neural network % ) 2 Layer
with one to three hidden layers and 5, 10, or g 1 — .. 3 Layer

20 neurons on each hidden layer. While the
mean squared error of all nine neural network 0
architectures lies in the same range, the
lowest observed mean squared error
architecture with the least level of complexity
is the two-layer architecture, with ten hidden
neurons on each hidden layer. It should,
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Figure 3: Mean-squared-error performance of the
different neural network architectures when tested
on the experimental data
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Figure 4 represents the R-squared 0.97
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performance of the nine neural network
architectures when tested on the
experimental data regarding the discharge
state. This R-squared is observed during the
linear regression of model-predicted values
and the experimentally observed values.
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Figure 4: R-squared performance of the different

neural network architectures when tested on the
experimental data
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During this application, this may be referred t1al ° Daa
to as the adjusted R-squared statistic, as it B y=T

does not measure the fit of the model on the
dynamic data but only considers the predicted
and observed data. This R-squared statistic
measures how closely the model-predicted
and experimentally observed data reflect each
other; thus, a value closer to one is desired. It
can be observed that the three-layer
architecture with twenty neurons on each
hidden layer has overfitted, performing much
worse than the other architectures in this
analysis. The rest of the architectures

performed equally in this analysis. 0.05%—— ' ' ' ' ' ' '
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Figure 5 represents the linear regression of Figure 5: Regression of the two-layer, 10-neurons on

the model-predicted values against the each hidden-layer network architecture model

experimenta“y observed data. SpECiﬁca”y, for predictions against experimental data
the two hidden layers, ten neurons on each

hidden layer neural network architecture, The two distinct curves that formed seem to be
which was determined to be the best the two different experimental trials, having
performing neural network architecture for differing degrees of accuracy for the whole of
desorption. The R-squared in this instance the dataset. While within the bounds of
was determined to be 0.99039. accuracy, this indicates the model is not perfect.
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CONCLUSION

The best-performing artificial neural network model achieved a regression coefficient of 0.9999 and
a mean squared error of less than 10-5 during training. Likewise, the best-performing neural network
model validation using the experimentally observed data achieved a regression coefficient of 0.99
and a mean squared error of less than 10-4. This proves that neural networks can model the
complexity of metal hydride reactors during discharge, specifically the HySA-systems Metal Hydride
reactor prototype.
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