

factor in plant growth

method

The objectives:

models

and also a time-consuming process

maize crop water requirement

based on known data to make new prediction

METHOD

Relative Humidity (R) (minimum, maximum), Solar

district, Bihar, India

Estimation of CWR of maize by FAO- 56 Penman

selection in WinGamma

Division of data in training (80%) and testing (20%)

datasets

The 3rd International Online Conference on Agriculture

22-24 October 2025 | Online

Evaluation of Machine Learning Approaches in Estimating Crop Water Requirement

Mrunalini Dinkar Humbare 1*, Indu Bhushan Bhagat²

- Kelappaji College of Agricultural Engineering and Food Technology, Tavanur, Kerala Agricultural University, Thrissur, Kerala, India, 679573 (humbare17@gmail.com)
- ² College of Agricultural Engineering and Technology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, **Bihar, India, 848125**

RESULTS & DISCUSSION O Crop water requirement (CWR): total amount of water Table 1: Gamma test for input combination a crop needs from planting to harvesting; critical Mask Gamma (Γ) **Input combinations** (I₁): N, T1, T2, W, R1, R2, VPD 1111111 0.267 0.807 O Determined using empirical methods that rely on extensive climatic data which may not be accessible (I₂): N, T1, T2, W, R1, R2 1111110 0.805 0.266 (I₃): N, T1, T2, W, R1, VPD 0.799 1111101 0.264 Years (I₄): N, T1, T2, W, R2, VPD 1111011 0.773 0.255 O Crop water requirement modelling - a suitable (I₅): N, T1, T2, R1, R2, VPD 1110111 0.895 0.296 Figure 1: Time-series plot of MARS for training phase 0.289 (I₆): N, T1, W, R1, R2, VPD 1101111 0.875 O Can be accomplished by using Machine Learning (I₇): N, T2, W, R1, R2, VPD 1011111 0.931 0.307 (ML), a subset of Artificial Intelligence (AI) concerned with the development of computational algorithms (I₈): T1, T2, W, R1, R2, VPD 0111111 1.722 0.569 (I₉): N, T1, T2, W, R1 1111100 0.829 0.274 (I₁₀): N, T1, T2, W, R2 0.775 1111010 0.256 1. To determine the suitable inputs of maize crop water (I₁₁): N, T1, T2, R1, R2 1110110 0.897 0.296 Years requirement modelling for using Machine Learning (I₁₂): N, T1, W, R1, R2 1101110 0.875 0.289 Figure 2: Time-series plot of MARS for testing phase 2. To study the performance and competency of (I₁₃): N, T2, W, R1, R2 1011110 0.930 0.307 different Machine Learning models for predicting observed (I₁₄): T1, T2, W, R1, R2 0111110 1.720 0.568 (I₁₅): N, T1, W, R1, VPD 1101101 0.940 0.310 predicted observed CWR (mm/day) 0 2 01 Collection of Temperature (T) (minimum, maximum), **Years** Radiation (N), Wind Speed (W) and Vapour Pressure Figure 4: Time-series plot of SVM for testing phase Deficit (VPD) for 20 years (2001-2020) for Samastipur **Years** Figure 3: Time-series plot of SVM for training phase Monteith method and multiplying it by crop coefficient Application of Gamma Test for best input combination **Years Years** Figure 5: Time-series plot of RF for training phase Figure 6: Time-series plot of RF for testing phase y = 0.87x + 0.09y = 0.86x + 0.15Predicted CV (mm/day) Observed CWR (mm/day) Observed CWR (mm/day) Figure 7: Scatter plot of MARS for training phase Figure 8: Scatter plot of MARS for testing phase

Multi Adaptive Regression Splines (MARS), Support Vector Machine (SVM) and Random Forest (RF) models in RStudio with 80% dataset

INTRODUCTION & AIM

Models' testing using 20% dataset

Qualitative (scatter plots and time-series plots) and Quantitative analysis (statistical analysis by R², RMSE, NSE) for performance evaluation of best model

phase

Observed CWR (mm/day)

y = 0.84x + 0.11

	Table 2: ML models statistical parameters					Figure 9: Scatter plot of SVM for training					
Models	Training			Testing			≥ 10 ≥ 8]	y = 0.85x +			
	RMSE		NCE	D2	RMSE	NICE	dicted CV (mm/day)	$R^2 = 0.9$	5		
	R ²	(mm/day)	NSE	R ²	(mm/day)	NSE	Predicte (mm) 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			
MARS	0.90	0.70	0.84	0.88	0.66	0.83	0	2	4 Observe	6 ed CWI	
SVM	0.92	0.73	0.83	0.91	0.67	0.82			Observ	cu C WI	
RF	0.95	0.43	0.92	0.95	0.42	0.91	Figure 1	1: Scatte	r plot o	f RF f	

10 **12** VR (mm/day)

10

for training phase

Figure 10: Scatter plot of SVM for testing phase y = 0.83x + 0.62 $R^2 = 0.95$ Observed CWR (mm/day)

Observed CWR (mm/day)

y = 0.86x + 0.05

Figure 12: Scatter plot of RF for testing phase

CONCLUSION

- \bigcirc The Gamma test showed that the input I_{A} combination having (N, T1, T2, W, R2, VPD) was the best for maize crop
- The models' performance-wise rankings were RF, MARS and SVM
- From the results attained, RF model beat MARS and SVM throughout training and testing phases for maize crop emphasizing the value of ML models for precise maize water requirement prediction

REFERENCES

- O Saggi, M. K., & Jain, S. (2020). Application of fuzzy-genetic and regularization random forest (FG-RRF): Estimation of crop evapotranspiration (ET_c) for maize and wheat crops. Agricultural Water Management, 229, 105907.
- O Shan, X., Cui, N., Cai, H., Hu, X. & Zhao, L. (2020). Estimation of summer maize evapotranspiration using MARS model in the semi-arid region of northwest China. Computers and Electronics in Agriculture, 174, 105495.