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INTRODUCTION & AIM RESULTS & DISCUSSION
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Nano-silica Nano-zinc Nano-chitosan

Initial soil characterization included: BigEhnr (sol-gel) (precipitation) (ionic gelation)

o Soil texture

pH (H,O) Composite formation Composite formation
Electrical conductivity (EC)

Syrthoeswed Nanecalcnam

Organic matter (loss on ignition) = )
Total Cr and Cr (V1) (via alkaline digestion and ICP-OES analysis) . - v, f — : — Samt 3273830t 35 AN
Cation exchange capacity (CEC) :

- , Land-use Rice fields Coordinates: Nano-silica Nano-zinc  Sonication Drying Biochar-nanocomposite

N15°46°38.1” E119056’14.1” (sol-gel) (precipitation) (BC-Si/Zn/Ch)

Slope Gradient: : : . : . . . ¥ ] " .
Noarly Lovel Figure 2. Schematic diagram of the Preparation of biochar  Figure 6. Overlay spectra of the synthesized nano silica, nano calcium, nano chitosan and nanocomposites.

Parent Material: and nanomaterials.
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Soil Moisture: Rice husk biochar was produced through Table 2. Plant parameters of vetiver
Regime Ustic pyrolysis at 500°C. Nano-silica, nano-zinc,
Elevation: d _chit th . d \ TREATMENTS PLANT PARAMETER
1.5 mete_rs above sea level an nano-c I Osan were Syn . eslze USIng Tiller Number Tiller Diameter Shoot Weight Root Weight Total Biomass
Vegetation: e sol-gel, precipitation, and ionic gelation S S oac p— p— S—
(Fi_g_ure 1. Cross-section of the methOdS, respectlvely. These nanopartlcles T2 - Biochar Alone 7.77¢c 131.23cd 153.42hc 284.64cd
soil in the area at T meter depth.) were then combined with biochar through T3 - Nanocomposite Alone 9.59bc 127.81df 1M.96¢ 239.78de
sonication and mild heating to form a stable T4 - Biochar + nano silica 15.52a 184.985 284.99a 469.97a
¥ Experlmental dGSIgn biochar-nanocomposite (BC—SI/ZI’]/Ch) TS5 - Biochar + nano calcium 12.02ab 156.07bc 183.02b 339.096
c c A . o 5 - Bi r+ i 13.04ab 163.3256 108.476 343.80bc
Table 1. Experimental design and description of treatments  Design: Randomized Complete 76 - Blochar s nane chitesan 7 :
\ T7 - Biochar + nanocomposite 5.84c¢ 146.60c 185.14b6 331.74bc
BlOCk DeSIQn (RCBD) Tukey's HSD value(1%:)
Treatment Description Description . Re ||Cates. 4 er tl’eatmeﬂt ‘ v % ) )
!O % : -
» Soil per pot: 4 kg (5 L capacity) *Mean values w/in a column and factor denoted by the same letter has no significantly at 5% level by HSD

Combined nano-silica, nano-zinc.,  Planting: Vetiver slips (20 cm The combination of biochar and nanocomposite enhanced the tillering ability of vetiver,
Ve:’:"’ia;:;a_ — (wjz;a:;j;f::dwth length) after soil equilibration though increased tiller numbers resulted in smaller diameters. This improvement may be

Nancocomposite Daroparticlos . Duration: 90 days attributed to the higher surface area and reactivity of the nanocomposite (Benzon et al.,
2015). Silicon nanoparticles further support plant growth by enhancing photosynthesis, tissue

; Cond|t|9n§: Oytdoor _shade Wlth strength, and water regulation (Ma & Takahashi, 2002; Rastogi et al., 2019).
regular irrigation to field capacity ] - : _ -y
Among treatments, biochar + nanosilica showed the highest absorption efficiency (0.2531%),

likely due to increased Cr solubility linked to slight pH elevation (Alaboudi et al., 2019),
consistent with findings where biochar + chitosan reduced Cr(VI) by 55% (Mandal et al.,,
2017). However, overall, biochar-nanocomposite application showed limited improvement in
vetiver’'s chromium absorption efficiency.

4. Chemical and biological analyses

* Soil samples were collected at day O and day 90.
 Total Cr and Cr(VI) were analyzed by ICP-OES

foIIowm_g acid digestion and alkaline extraction, Table 3. Chromium (Cr) and Nickel (Ni) Absorption Efficiency and Soil Concentration
‘ Plant harvest respectively. Difference of Vetiver under Different Treatments

Soil sampling
(Day 0 and Day 90)

* Plant shoots and roots were harvested, washed,
oven-dried at 60°C, and digested in HNOs/H,O, for
tissue Cr analysis.

 Antioxidant enzyme assays (catalase (CAT) and
peroxidase (POD)) were conducted on fresh leaf
material using spectrophotometric protocols and 5 - Biochar + Nano Calcium 14Ty o0 d1e e o
normalized per mg protein. T6 - Blochar + Nano Chitosan 01608 01237 336.83

« SEM-EDX examined composite surface Tukey's HSD Value N 01117 40252 103568
morphology and elemental distribution.

Cr Absorption Ni Absorption Difference in Soil Difference in Soil

Treatment
Efficiency (%) Efficiency (%) Cr (g-kg-") Ni (g-kg-")

T1 - No Application 0.0852 0.0432 256.1 42.53
T2 - Biochar Alone 01256 0.0983 159.54 -138.1
T3 - Nanocomposite Alone 0.0837 0.0999 256.6 57.96

T4 - Biochar + Nano Silica 0.2531 0.1912 437.09 137.96

» SEM-EDX CAT and POD
< assays

Assayed on fresh leaf _ o _ _ _ *computed based on means.
material, spectro- * FTIR identified functional groups involved in Vetiver applied with Treatment 6 (Biochar + nano chitosan) had lowest difference in terms
photometric protcols, adsorption. @ soil Ni. The result is in contrast with the study of Hadi (2012) and Heidari et al. (2014)

normalized per m . el : . . : ) : :
RELINE wherein Ni bioavailability in soil was reduce, as well as lowered the biological accumulation

. of Ni in roots and shoots, and Ni transfer to leaves.
5. Data Analysis | —

Data were expressed as mean * standard CONCLUS'ON

deviation (SD).

One-way ANOVA was used to determine
significant differences among treatments.
Tukey’s post-hoc test was applied for multiple
comparisons at a = 0.05.

Bioconcentration Factor (BCF) and
Translocation Factor (TF) were computed as:

protein

The study concluded that nano-silica, nano-calcium, and nano-chitosan were successfully
synthesized and characterized. The nanomaterials were applied to test the
phytoremediation potential of vetiver grass, where biochar + nano-silica produced the
highest biomass yield. However, biochar-nanocomposites did not enhance metal
absorption, and results highlighted the risk of heavy metal translocation to harvestable plant
parts.

Figure 3. Schematic diagram of the chemical
and biological analyses
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