

Development and Characterization of Fermented Seaweed-Based Meat Analogs Using Two Different Seaweed Types

Izalin Zahari, Shaiful Adzni Sharifudin

Food Science & Technology Research Centre, Malaysian Agricultural Research & Development Institute (MARDI), Selangor, Malaysia

izalin@mardi.gov.my

INTRODUCTION & AIM

The rising global demand for sustainable and health-focused diets has accelerated interest in developing meat alternatives from novel plant-based sources. Seaweeds, particularly *Kappaphycus alvarezii* and *Gracilaria sp.*, are abundant marine resources rich in fibre, bioactive compounds, and functional nutrients, making them promising candidates for alternative protein development.

Fermentation offers a natural approach to improve the flavour, texture, and nutritional quality of seaweed-based ingredients while reducing undesirable marine odours. In this study, fermented *Kappaphycus alvarezii* and *Gracilaria sp.* were incorporated as protein substitutes in meatball analogs, with the aim of developing a functional, sustainable, and protein-rich meat alternative.

This study aims to evaluate the effects of fermentation on the physicochemical, textural, microbiological, and sensory properties of seaweed-based meat analogues, with the goal of developing clean-label, minimally processed foods aligned with sustainable nutrition trends.

METHOD

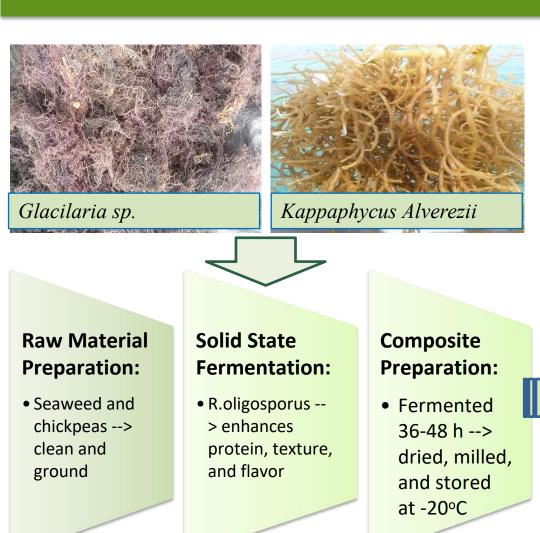


Figure 1. Overview of the fermented seaweed composite production process.

Table 1. Formulation of meatball analogs from fermented

seaweed				
Ingredients	Meatball	Meatball		
	analogue	analogue		
	Kappaphycus	Gracilaria		
Fermented	35.97	-		
Kappa (block)				
Fermented	-	35.97		
Gracilaria (block)				
Wheat gluten	14.39	14.39		
Tapioca starch	9.59	9.59		
Fermented Kappa	4.80	-		
powder				
Fermented	-	4.80		
Gracilaria powder				
Fresh roselle calyx	6.00	6.00		
Bread crumbs	9.59	9.59		
Water	2.40	2.40		
Bbq sauce	3.60	3.60		
Salt	0.96	0.96		
Oil	3.60	3.60		
Red onion	2.40	2.40		
Garlic	1.44	1.44		
Sugar	1.20	1.20		
Seasoning powder	0.96	0.96		
Mix herbs	0.48	0.48		
Black pepper	1.68	1.68		
Paprika	0.96	0.96		

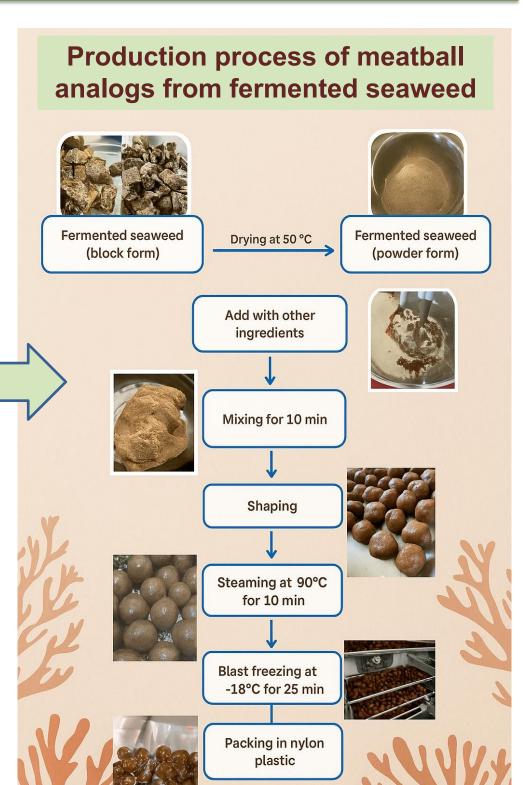
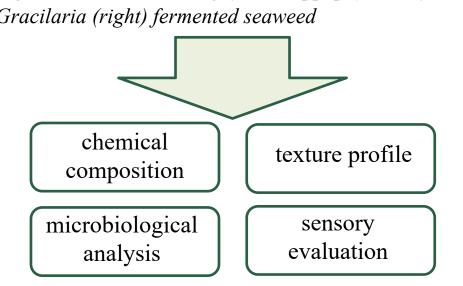



Figure 2. Processing flow of meatball analogs from fermented seaweed

Figure 3. Meatball analogs from Kappaphycus (left), and Gracilaria (right) fermented seaweed

RESULTS & DISCUSSION

Table 2. Proximate composition of meatball analogues using different types of fermented seaweed

Parameters	Kappaphycus	Gracilaria		
	Meatball analog	Meatball analog		
Moisture (%)	49.10 ± 0.71^{a}	48.25 ± 0.21a		
Protein (%)	17.95 ± 0.07^{a}	17.15 ± 0.49^{a}		
Fat (%)	3.25 ± 0.07^{a}	3.25 ± 0.21^{a}		
Ash (%)	3.40 ± 0.14^{b}	2.60 ± 0.00^{a}		
Carbohydrate (%)	22.15 ± 0.49^{b}	24.65 ± 0.35^{a}		
Energy (%)	198.00 ± 2.83^{a}	203.00 ± 2.12^{a}		
Total dietary fibre (%)	4.15 ± 0.07^{a}	4.10 ± 0.14^{a}		
pН	5.05 ± 0.01^{a}	4.93 ± 0.01^{b}		
Water activity (a _w)	0.95 ± 0.00^{a}	0.95 ± 0.00^{a}		
Cooking yield (%)	94.68 ± 0.10^{a}	97.18 ± 1.82a		
Values are mean + SD (% wet basis) Different lowercase letters indicate				

Values are mean \pm SD (% wet basis). Different lowercase letters indicate significant differences ($p \le 0.05$).

Table 3. Antioxidant content of meatball analogs from different types of fermented seaweed

• •		
Parameters	Kappaphycus	Gracilaria
	Meatball	Meatball
	analog	analog
TPC (mg GAE/g)	1.86 ± 0.03^{a}	1.49 ± 0.01^{b}
FRAP (mg FE/g)	2.19 ± 0.02^{b}	2.49 ± 0.02^{a}
TEAC (mg TE/g)	1.29 ± 0.02^{a}	1.18 ± 0.02^{b}
TFC (mg QE/g)	0.36 ± 0.01 ^b	0.39 ± 0.01^{a}
DPPH (% inhibition)	47.71 ± 0.51^{a}	44.04 ± 2.72^{a}
	·	·

Data are expressed as mean \pm standard deviation. Means in the same column with different superscripts were significantly different (p<0.05)

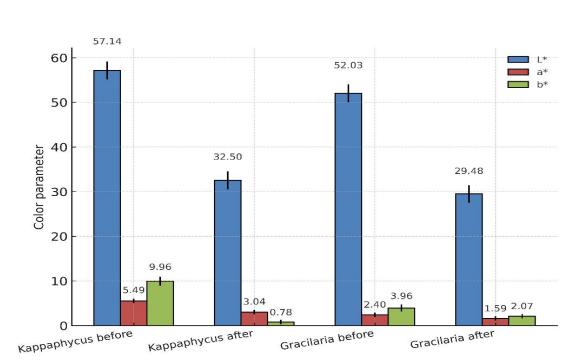


Figure 3. Colour parameter of meatball analogs from (i) Kappaphycus, and (ii) Gracilaria fermented seaweed

3500
3000
3000
2500
1000
1000
567.7
500
Firmness (a)
Springiness (%)

Figure 4. Textural properties of meatball analogs from (i) Kappaphycus, and (ii) Gracilaria fermented seaweed

fermented Kappaphycus and Gracilaria seaweed as a protein substitute Microbiological analysis (CFU/g) Total yeast Total Sample & mould E. coli S. aureus Plate coliform Count count Meatball analog 4.0×10^2 ND ND ND ND Kappaphycus Meatball analog 4.0×10^2 ND ND ND ND Gracilaria

Table 4. Microbiological parameters of meatball analogs using

ND = Not Detected (below detection limit of 10 CFU/g)

Values are given as mean ± standard deviation

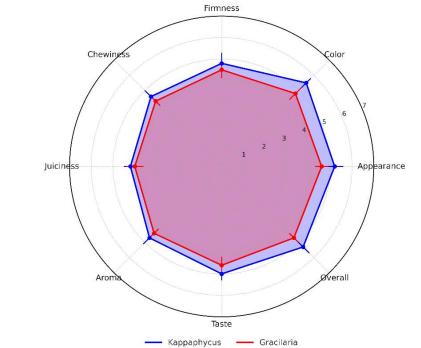
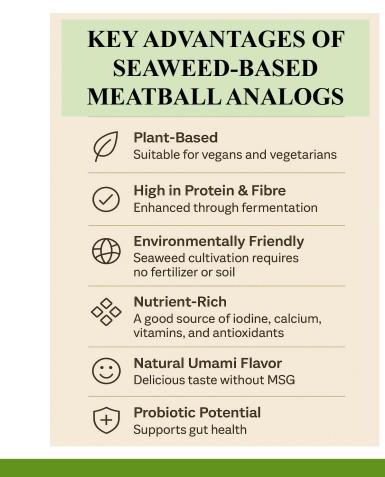



Figure 5. Sensory evaluation of meatball analogs from Kappaphycus and Gracilaria fermented seaweed

The fermented seaweed meatball is vacuum-packed in a Nylon/PE plastic (as primary packaging) and semi-rigid black polypropylene (PP) tray, sealed for freshness and durability (as secondary packaging). A printed paperboard sleeve provides product information and branding, offering an eco-friendly and attractive presentation suitable for chilled or frozen plant-based foods.

CONCLUSION

- Fermented *Kappaphycus* and *Gracilaria* seaweeds produced nutritious, shelf-stable meatball analogs lasting up to 12 months.
- Both showed low cooking loss, indicating good moisture and nutrient retention.
- The Kappaphycus variant received higher sensory acceptance due to its lighter, meat-like colour.
- Visual similarity plays a key role in consumer preference for plant-based alternatives.

FUTURE WORK / REFERENCES

Future research should aim to optimise amino acid composition and enhance colour and texture without compromising nutritional quality.