Physicochemical Evaluation of Alternative and Conventional Flours: Toward Nutritional Diversification in the Flour-Based Industry

Diana Daccak ^{1,2}; Bárbara Barra³; Cláudia Pessoa ^{1,2}; Inês Luís ^{1,2}; Ana Marques ^{1,2}; Ana Coelho ^{1,2}; Fernando Lidon 1,2; Fernando Reboredo 1,2

¹ Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal ² GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal ³ FCT-NOVA, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

INTRODUCTION & AIM

The flour-based industry constitutes the second most valued food sector in Portugal. As consumers seek healthier and functional food options, the industry has invested in the development of new products linked to health benefits. In recent years, incorporation of alternative raw materials beyond conventional wheat flour has expanded the number of flours available to consumers

This study aimed to characterize a range of commercially available flours in Portuguese hypermarkets, comprising seven refined flours (wheat, rice, oat, carob, almond, maize, and amaranth) and four wholemeal flours (oat, wheat, rye, and spelt).

Refined Flours

Wholemeal flour

Samples	Brand	Abbreviation				
Wheat	Branca de Neve	W				
Rice	Ceifeira	RC	Wholemeal			
Rice	Origens	RO	Samples	Brand	Abbreviation	
Oat	Seara	0	Wheat	Continente	W (WF)	
Carob	Seara	С	Rye	Nacional	R (WF)	
Almond	Salutem	Al	Oat	Nacional	O (WF)	
Maize	Ceifeira	M	Spelt Nacional		S (WF)	

METHOD

Flours characterization through:

Colorimetric parameters (L*, a*. b*) -Colorimeter (CR-400 Konica Minolta)

☐ Moisture content - NP 516/2000 (2000) 5 g in an oven (BIOBASE Drying Oven, model BOV-T105F) for 1h30 at 130 °C.

☐ Mineral elements - X-ray fluorescence spectroscopy (Olympus Vanta C Series, modelo VCA)

☐ Ash content- 5 g at 900 °C for 2 hours in a muffle furnace (Nabertherm 30-3000 °C B

RESULTS & DISCUSSION

The letters a,b, c, d, e, f, g indicate significant differences between fields flours (statistical analysis using aone-wa

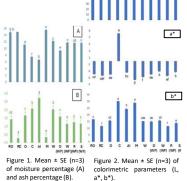

In general, mineral composition did not significantly differ across flour samples (Tab.1). However, some exceptions were noted: manganese (Mn) was detected only in rice, almond, and wholewheat flour; selenium (Se) was only detected in wheat flour; and zinc (Zn) presented the higher value in oat flour (although not being significant) (Tab.1).

Table 1. Mean ± SE concentration of Zn, Se, Mo, Mn, Fe (ppm), Ca and S (%). BDL: Below detection level

Samples	RO	RC	0	С	Al	М	w	O(WF)	W(WF)	R(WF)	S(WF)
Ca	2,59ab	2,60ab	2,50bc	2,52bc	2,54bc	2,48°	2,54bc	2,57abc	2,57abc	2,59ab	2,65ª
	$(\pm 0,03)$	$(\pm 0,04)$	$(\pm 0,03)$	$(\pm 0,01)$	$(\pm 0,02)$	$(\pm 0,01)$	$(\pm 0,02)$	$(\pm 0,02)$	$(\pm 0,02)$	$(\pm 0,01)$	(±0,02)
S	0,148ª	0,180a	0,171ª	0,167ª	0,165ª	0,155ª	0,145ª	0,203a	0,159a	0,143a	0,163ª
	$(\pm 0,029)$	$(\pm 0,009)$	$(\pm 0,007)$	$(\pm 0,005)$	$(\pm 0,022)$	$(\pm 0,019)$	$(\pm 0,026)$	$(\pm 0,056)$	$(\pm 0,016)$	$(\pm 0,015)$	$(\pm 0,020)$
Fe	333,00ª	350,00 ^a	300,67ª	337,00 ^a	332,67ª	358,33ª	331,67ª	295,33ª	316,33ª	307,67ª	365,67ª
	$(\pm 32,08)$	$(\pm 20,60)$	$(\pm 25,99)$	$(\pm 35, 35)$	$(\pm 23,35)$	$(\pm 37,49)$	$(\pm 6,17)$	$(\pm 12,03)$	$(\pm 23,75)$	$(\pm 19,94)$	$(\pm 3,28)$
Mn	134,00°	BDL	BDL	BDL	186,00ª		BDL	BDL	190,00ª	BDL	BDL
	$(\pm 4,90)$				$(\pm 35, 11)$				$(\pm 27,76)$		
Мо	19,00a	18,00a	18,67ª	17,67ª	21,00a	20,00a	22,00a	20,50a	24,33ª	LOD	24,00ª
	$(\pm 2,08)$	$(\pm 1,63)$	$(\pm 1,76)$	$(\pm 0,33)$	$(\pm 3,27)$	$(\pm 1,63)$	$(\pm 0,58)$	$(\pm 0,41)$	$(\pm 1,86)$		$(\pm 2,45)$
Zn	54,00ab	56,67ab	71,33ª	48,33 ^b	50,33 ^b	66,67ab	62,67ab	58,67ab	55,67ab	54,33ab	61,33ab
	$(\pm 4,62)$	$(\pm 1,86)$	$(\pm 5, 17)$	$(\pm 4,41)$	$(\pm 3,48)$	(± 0.88)	$(\pm 2,91)$	$(\pm 3,18)$	$(\pm 6,33)$	$(\pm 5,04)$	$(\pm 0,67)$
Se	BDL	BDL	BDL	BDL	BDL	BDL	8,00° (±0,00)	BDL	BDL	BDL	BDL

Almond flour exhibited a notably low moisture content and the highest ash level among the alternative flours (Fig.2-A). Moisture content varied across the flour samples, with flour M showing the highest percentage and AI the lowest (Fig.2-A). Regarding ash content (Fig.2-B), AI stood out with the highest ash content, followed by flours C and W, whereas flours M and RC exhibited the lowest values (Fig.2-B). These findings highlight the compositional diversity among the flours, which may influence their nutritional value and functional properties in applications (Fig.2-B).

The flours exhibited similar coloration with respect to the L* parameter, although C flour stood out with a lower value (Fig.1). In terms of the a* parameter. C flour also distinguished itself by showing a contribution from the red region of the spectrum (Fig.1). Regarding the b* parameter, all samples showed a contribution from the yellow region, with some variations among them (Fig.1). Notably, flours C, M, and Al demonstrated higher b* values, indicating a more pronounced yellow contribution (Fig.1).

CONCLUSION

- Alternative flours show mineral levels comparable to wheat flour but differ in moisture and ash content-key factors to consider based on the desired end product.
- ☐ These differences, when aligned with specific product goals, can serve as valuable assets that reinforce the innovative potential of alternative flours in several food applications.

FUTURE WORK / REFERENCES

Oliveira, I.M., Melo, F. dos S. N. de, Sousa, M. M. de, Menezes, M. de S., Paz, E. de O., Cavalcanti, M. da S. (2020) Utilização de farinhas alternativas em produtos de panificação: uma revisão literária. Research, Society and Development, 9(9). https://doi.org/10.33448/rsdv9i9.6228