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Alzheimer’s disease (AD) is characterised by a progressive cholinergic deficit. 

Although current acetylcholinesterase (AChE) inhibitors alleviate cognitive symptoms, 

their brain penetration and tolerability remain sub-optimal [1]. 5,6-Dimethoxyindanone 

represents the pharmacophore of donepezil; substitution with a piperazine ring 

generates analogues with promising activity. The aim of this study was to develop a 

quantitative structure–activity relationship (QSAR) model able to predict the 

AChE-inhibitory potency (IC₅₀) of 5,6-dimethoxyindanone-piperazine derivatives, 

thereby guiding the design of improved inhibitors.

A set of 15 literature analogues with experimental IC₅₀ (Ellman assay) was 

compiled from Mishra et al. (donepezil-based MTDLs) and used as the response source 

for modelling [2]. Conformers were energy-minimised (HyperChem MM⁺ → PM3). 4,885 

Dragon 7 descriptors were computed and reduced to 843 by low-variance and 

multicollinearity filtering (r ≥ 0.95). Feature selection (Statistica 14) returned four 

variables (Mor22v, HATS8p, VE1_B(p), C-006); an artificial neural network (ANN) MLP 

4-3-1 (BFGS) was trained on nine compounds and checked by LOO, a 3-compound 

external test, and a 3-compound validation set. 

The final model achieved R² = 0.961, Q² = 0.999, and MAE = 0.001 µM; 

external prediction yielded R²_test = 0.928 with a near-unity regression slope (≈ 0.98) 

on the parity plot (Figure 1). 

Sensitivity ranked C-006 (42.1) > Mor22v (16.4) > VE1_B(p) (8.3) > HATS8p (3.1), 

consistent with the variable-importance profile shown in the descriptor importance bar 

chart (Figure 2).

Figure 1. Predicted vs experimental IC₅₀ (µM) for 15 studied analogues.

Figure 2. Descriptor importance derived from ANN sensitivity analysis.

Descriptor interpretation:

• Mor22v (3D-MoRSE) captures short-range atom-pair contributions and vdW-weighted 

shape; its prominence matches the geometric constraints of the AChE gorge and 

correlates with π-fragment placement;

• HATS8p (GETAWAY) encodes geometry-weighted polarizability, highlighting benefits 

of π-rich/heteroatom motifs and their spatial dispersion for non-covalent recognition

;

• VE1_B(p) (Burden eigenvalue, polarizability-weighted) reflects global electron-

distribution patterns relevant to aromatic stacking/edge contacts within the catalytic and 

peripheral sites;

• C-006 (ACF) counts CH₂–R–X fragments, tying potency to substitution density near 

the indanone–piperazine junction and linker electronics.

Design takeaways:

• Maintain compact molecular volume while increasing polarizability (e.g., para-aryl, 

ether or judicious halo/CF₃) to lift Mor22v/HATS8p without overshooting lipophilicity; 

tune CH₂–R–X around the hinge to optimize C-006. 

• These rules align with broader AChE-QSAR evidence that descriptor families blending 

3D geometry + atom-weighting (GETAWAY) and electron-diffraction-like 3D codes 

(3D-MoRSE) tend to dominate predictivity. 

• Prioritizing analogues with log P ≈ 2–4 should support BBB penetration while limiting 

non-specific binding.

An interpretable ANN-QSAR for 5,6-dimethoxyindanone-piperazine AChE 

inhibitors shows high internal and external performance and yields actionable rules 

(enhanced polarizability; targeted CH₂–R–X substitution) to streamline analogue 

selection for experimental follow-up. 

Expand the chemical domain (≥ 40 analogues), couple training with 

BBB/ADMET in-silico filters, and prospectively validate top-ranked designs 

in enzyme/cellular assays.
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