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Myocardial ischemia/reperfusion injury (MI/RIl) remains a major challenge in &f > m :
the treatment of acute myocardial infarction due to the lack of effective o -
Ginsenoside Rgl 3D culture hUC-MSCs

therapeutic options. Despite advancements in interventional techniques like
percutaneous coronary intervention, MI/RI-induced oxidative stress,
inflammatory responses, and cardiomyocyte apoptosis still lead to poor long-
term prognosis for patients. While mesenchymal stromal cells (MSCs) and
their derivates show promising potential for MI/RI therapy, their clinical
application is hindered by low transplantation efficiency—often resulting from
poor cell retention in the ischemic myocardium—and insufficient yield for
large-scale clinical use. In this study, we engineered nanoscale artificial cell-
derived vesicles (ACDVs) by extruding Ginsenoside Rg1-primed MSCs (Rg1-
MSCs), resulting in Rg1-ACDVs. Rg1-ACDVs displayed superior therapeutic A % . .« DNA
efficacy compared to non-primed ACDVs and extracellular vesicles derived AT — AMASE7 S E -((,-('Q"“_ge/ Yy _
from Rg1-MSCs (Rg1-EVs), as evidenced by reduced myocardial infarct size RV |
in rat MI/RIl models. Multi-omics analysis revealed that Rg1-ACDVs possess
distinct molecular signatures associated with promoting cell cycle Nucleus @
progression and reducing DNA damage, including upregulated expression of _ | .
DNA repair-related proteins and cell cycle regulators. These findings were Cﬁf&mﬁ/ Uasaed
further validated experimentally, demonstrating that Rg1-ACDVs effectively |

reduce reactive oxygen species (ROS) accumulation—an important driver of i
MI/Rl—and mitigate DNA damage both in vitro (in cultured cardiomyocytes) Polycarbonate Film  ACDVs Mitochondria  Cardiomyocyte DNA
and in vivo (in rat MI/RIl models). This study highlights the synergistic benefits
of combining Ginsenoside Rg1 priming (which modulates MSC paracrine
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function) with nanoscale engineering (which optimizes vesicle delivery), and 3 Rg1-ACDVs demonstrate the therapeutic efficiency in the MI/RI rat model and
introduces Rg1-ACDVs as a scalable and innovative strategy, offering a H,O,-injured cardiomyocytes.
promising approach for improving clinical outcomes in MI/RI therapy. B e S——— -
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(a) Schematic diagram of ACDVs production through extrusion and gradient centrifugation. (b) TEM images of ACDVs, Rg1- e o s - s m“m
ACDVs, EVs and R91—EYS- NTA analysis of (c) digmejter distribution and (d) Zeta potential of ACDVs, RQT—ACDVS, EVs anfj (a) Representative fluorescence images and statistical analysis of MitoTracker and MitoSOX staining in AC16 (n = 4), indicating reduced mitochondrial ROS after Rg1-ACDVs
Rg1-EVs. (e) WB detection of EV marker expression in ACDVs, Rg1-ACDVs, EVs, Rg1-EVs and MSCs. miRNA-Seq analysis of treatment. (b) Representative fluorescence images of DHE staining in rat myocardial tissue, indicating reduced ROS after Rg1-ACDVs treatment (17 = 3). (c) Representative
ACDVs, Rg1-ACDVs and Rg1-EVs: (f) KEGG pathway enrichment of genes corresponding to DE-miRNAs between Rg1-ACDVs immunofluorescence images and statistical analysis of y-H2AX and 8-OHdG expression in H9c2 cells. ((d) Representative immunohistochemistry images and (h) statistical analysis of
and Rg1-EVs. vy-H2AX in myocardial tissue of Sprague—Dawley rats after MI/RI and treatment (n = 3).
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